Normalized defining polynomial
\( x^{18} - 6 x^{17} + 18 x^{16} - 62 x^{15} + 364 x^{14} - 1354 x^{13} + 2798 x^{12} - 2364 x^{11} - 864 x^{10} + 7560 x^{9} - 24248 x^{8} + 29216 x^{7} - 29640 x^{6} + 12016 x^{5} + 37256 x^{4} - 30112 x^{3} + 38896 x^{2} + 3232 x - 232 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34504968377159185236889600000000=2^{18}\cdot 5^{8}\cdot 7^{8}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{20} a^{12} + \frac{1}{5} a^{11} + \frac{1}{10} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{10} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{20} a^{13} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{140} a^{14} - \frac{2}{35} a^{11} - \frac{1}{35} a^{10} + \frac{3}{35} a^{9} + \frac{8}{35} a^{8} - \frac{3}{14} a^{7} + \frac{1}{5} a^{6} + \frac{13}{35} a^{5} + \frac{11}{35} a^{4} + \frac{9}{35} a^{3} + \frac{8}{35} a^{2} - \frac{4}{35} a - \frac{6}{35}$, $\frac{1}{140} a^{15} - \frac{1}{140} a^{12} + \frac{6}{35} a^{11} + \frac{13}{70} a^{10} - \frac{1}{14} a^{9} - \frac{1}{70} a^{8} - \frac{1}{5} a^{7} + \frac{1}{14} a^{6} - \frac{2}{7} a^{5} + \frac{16}{35} a^{4} + \frac{1}{35} a^{3} + \frac{17}{35} a^{2} - \frac{6}{35} a + \frac{1}{5}$, $\frac{1}{140} a^{16} - \frac{1}{140} a^{13} + \frac{3}{140} a^{12} + \frac{3}{35} a^{11} + \frac{9}{70} a^{10} - \frac{4}{35} a^{9} + \frac{1}{5} a^{8} - \frac{8}{35} a^{7} + \frac{4}{35} a^{6} + \frac{9}{35} a^{5} + \frac{3}{7} a^{4} + \frac{3}{35} a^{3} + \frac{1}{35} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{42141190406499019323371648939654900} a^{17} - \frac{6161653775815700778285916430721}{3010085029035644237383689209975350} a^{16} + \frac{22564483390195827048975874565577}{8428238081299803864674329787930980} a^{15} - \frac{9696893283940417310338560846461}{21070595203249509661685824469827450} a^{14} - \frac{135548604564681312778205995390567}{8428238081299803864674329787930980} a^{13} - \frac{370997366356762502499106920124137}{21070595203249509661685824469827450} a^{12} - \frac{5372449554425244793776222709909}{145314449677582825253005685998810} a^{11} - \frac{305947523471556469416587381421851}{10535297601624754830842912234913725} a^{10} + \frac{993602649452040659930803862794527}{10535297601624754830842912234913725} a^{9} + \frac{965428069700446673911367299405459}{10535297601624754830842912234913725} a^{8} + \frac{196651843174771082484490086832491}{10535297601624754830842912234913725} a^{7} - \frac{1943889676992721733269626397392629}{10535297601624754830842912234913725} a^{6} + \frac{1722802069390906168763981265447552}{10535297601624754830842912234913725} a^{5} + \frac{4556238168787306063232629872384793}{10535297601624754830842912234913725} a^{4} - \frac{31173267524772254747706058066104}{2107059520324950966168582446982745} a^{3} - \frac{3923089197658812626142888815055078}{10535297601624754830842912234913725} a^{2} + \frac{889384414249295727955959112997873}{10535297601624754830842912234913725} a + \frac{98941446708635433105562216345241}{363286124193957063132514214997025}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2009398076.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 30 conjugacy class representatives for t18n520 |
| Character table for t18n520 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.734261622920000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $197$ | 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |