Properties

Label 18.6.33637654972...8621.1
Degree $18$
Signature $[6, 6]$
Discriminant $3^{18}\cdot 7^{14}\cdot 29^{4}\cdot 181$
Root discriminant $38.44$
Ramified primes $3, 7, 29, 181$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T766

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![15673, -59892, 58212, 48965, -133350, 69216, 38002, -56421, 16068, 8099, -6489, 822, 461, 0, -117, 8, 24, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 24*x^16 + 8*x^15 - 117*x^14 + 461*x^12 + 822*x^11 - 6489*x^10 + 8099*x^9 + 16068*x^8 - 56421*x^7 + 38002*x^6 + 69216*x^5 - 133350*x^4 + 48965*x^3 + 58212*x^2 - 59892*x + 15673)
 
gp: K = bnfinit(x^18 - 9*x^17 + 24*x^16 + 8*x^15 - 117*x^14 + 461*x^12 + 822*x^11 - 6489*x^10 + 8099*x^9 + 16068*x^8 - 56421*x^7 + 38002*x^6 + 69216*x^5 - 133350*x^4 + 48965*x^3 + 58212*x^2 - 59892*x + 15673, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 24 x^{16} + 8 x^{15} - 117 x^{14} + 461 x^{12} + 822 x^{11} - 6489 x^{10} + 8099 x^{9} + 16068 x^{8} - 56421 x^{7} + 38002 x^{6} + 69216 x^{5} - 133350 x^{4} + 48965 x^{3} + 58212 x^{2} - 59892 x + 15673 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(33637654972350098104598658621=3^{18}\cdot 7^{14}\cdot 29^{4}\cdot 181\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 29, 181$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} - \frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{1}{7} a^{10} - \frac{3}{7} a^{9} + \frac{1}{7} a^{8} + \frac{2}{7} a^{7} + \frac{3}{7} a^{6}$, $\frac{1}{7} a^{15} - \frac{2}{7} a^{13} - \frac{1}{7} a^{12} - \frac{1}{7} a^{11} + \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6}$, $\frac{1}{49} a^{16} + \frac{2}{49} a^{15} + \frac{2}{7} a^{13} - \frac{12}{49} a^{12} + \frac{8}{49} a^{11} + \frac{23}{49} a^{10} + \frac{3}{7} a^{9} - \frac{15}{49} a^{8} + \frac{10}{49} a^{7} + \frac{12}{49} a^{6} - \frac{1}{7} a^{5} - \frac{2}{7} a^{4} - \frac{2}{7} a^{2} + \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{83654593657191392734711884780023} a^{17} - \frac{26745562346280771114465312810}{83654593657191392734711884780023} a^{16} + \frac{1980458691527610035484254358146}{83654593657191392734711884780023} a^{15} + \frac{292088415864851552904500191552}{11950656236741627533530269254289} a^{14} - \frac{18947479222491176330337273852591}{83654593657191392734711884780023} a^{13} - \frac{830700049736270169933516542793}{1707236605248803933361467036327} a^{12} + \frac{17383712956688861773420396540348}{83654593657191392734711884780023} a^{11} - \frac{23941425805147912677319912631879}{83654593657191392734711884780023} a^{10} - \frac{35957020916125139837655732163340}{83654593657191392734711884780023} a^{9} + \frac{680365047093147146990832833609}{11950656236741627533530269254289} a^{8} - \frac{2939103641961901105907317939449}{11950656236741627533530269254289} a^{7} - \frac{1752111834254518009543170007176}{83654593657191392734711884780023} a^{6} + \frac{4883116307391007983414234161998}{11950656236741627533530269254289} a^{5} - \frac{5403303691451969301497655914008}{11950656236741627533530269254289} a^{4} + \frac{4704322073772411041694770943627}{11950656236741627533530269254289} a^{3} - \frac{1866653201122649704911464413534}{11950656236741627533530269254289} a^{2} + \frac{4030481883521690894786303918419}{11950656236741627533530269254289} a + \frac{508034089155704422400401374770}{11950656236741627533530269254289}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27401195.6209 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T766:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 82944
The 144 conjugacy class representatives for t18n766 are not computed
Character table for t18n766 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.13632439166829.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ $18$ ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.9.9.2$x^{9} + 18 x^{3} + 27 x + 27$$3$$3$$9$$C_3^2 : S_3 $$[3/2, 3/2]_{2}^{3}$
3.9.9.2$x^{9} + 18 x^{3} + 27 x + 27$$3$$3$$9$$C_3^2 : S_3 $$[3/2, 3/2]_{2}^{3}$
$7$7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.5.5$x^{6} + 56$$6$$1$$5$$C_6$$[\ ]_{6}$
$29$$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{29}$$x + 2$$1$$1$$0$Trivial$[\ ]$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.3.2.1$x^{3} - 29$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
29.4.0.1$x^{4} - x + 19$$1$$4$$0$$C_4$$[\ ]^{4}$
$181$$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{181}$$x + 2$$1$$1$$0$Trivial$[\ ]$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.0.1$x^{2} - x + 18$$1$$2$$0$$C_2$$[\ ]^{2}$
181.2.1.2$x^{2} + 362$$2$$1$$1$$C_2$$[\ ]_{2}$
181.4.0.1$x^{4} - x + 54$$1$$4$$0$$C_4$$[\ ]^{4}$
181.4.0.1$x^{4} - x + 54$$1$$4$$0$$C_4$$[\ ]^{4}$