Normalized defining polynomial
\( x^{18} - 54 x^{15} - 180 x^{14} + 1206 x^{13} + 459 x^{12} - 7848 x^{11} + 11664 x^{10} - 556 x^{9} - 72756 x^{8} + 184356 x^{7} + 44463 x^{6} - 598968 x^{5} + 542700 x^{4} + 351114 x^{3} - 1003104 x^{2} + 458298 x - 59087 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3321979107367014091730799501594624=2^{12}\cdot 3^{37}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{20} a^{15} - \frac{1}{5} a^{14} - \frac{1}{10} a^{13} - \frac{3}{20} a^{12} + \frac{1}{5} a^{11} + \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{3}{10} a^{7} + \frac{3}{10} a^{6} + \frac{1}{5} a^{5} + \frac{3}{10} a^{4} + \frac{3}{20} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{3}{20}$, $\frac{1}{25460} a^{16} + \frac{109}{12730} a^{15} - \frac{227}{2546} a^{14} - \frac{3757}{25460} a^{13} - \frac{2161}{12730} a^{12} + \frac{105}{1273} a^{11} - \frac{123}{1273} a^{10} + \frac{657}{6365} a^{9} - \frac{231}{6365} a^{8} + \frac{2457}{12730} a^{7} - \frac{1571}{6365} a^{6} + \frac{2306}{6365} a^{5} + \frac{1063}{5092} a^{4} - \frac{6029}{12730} a^{3} - \frac{1191}{2546} a^{2} - \frac{457}{25460} a + \frac{4497}{12730}$, $\frac{1}{124806693229286582335609817943004120820} a^{17} - \frac{868640611249895037437228756171141}{124806693229286582335609817943004120820} a^{16} - \frac{217156195367489708015096182067306529}{24961338645857316467121963588600824164} a^{15} + \frac{32791641247699244384402754422052283}{860735815374390223004205640986235316} a^{14} + \frac{3581018745252354601619729295741162061}{17829527604183797476515688277572017260} a^{13} + \frac{18196570514369448174878675125824164537}{124806693229286582335609817943004120820} a^{12} + \frac{7372521525866090583840792457736713307}{31201673307321645583902454485751030205} a^{11} - \frac{8845026169908995437359070227834278689}{62403346614643291167804908971502060410} a^{10} - \frac{7043897694266438108405496670390588257}{62403346614643291167804908971502060410} a^{9} + \frac{6240401397380039431534379775971051151}{62403346614643291167804908971502060410} a^{8} - \frac{12083790006656185451011105846640015538}{31201673307321645583902454485751030205} a^{7} - \frac{2098197353211889204151758108079618101}{4457381901045949369128922069393004315} a^{6} + \frac{37401877615947268219331177379306579387}{124806693229286582335609817943004120820} a^{5} + \frac{38592527393205041026706188105039005319}{124806693229286582335609817943004120820} a^{4} - \frac{36099479494043958750032848864891539157}{124806693229286582335609817943004120820} a^{3} - \frac{10189682833160903263803331903162102657}{24961338645857316467121963588600824164} a^{2} - \frac{28819818426112808239102939523344309467}{124806693229286582335609817943004120820} a + \frac{1208810395993724381334394419243258509}{17829527604183797476515688277572017260}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6891398522.29 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3:S_4$ |
| Character table for $C_3:S_4$ |
Intermediate fields
| 3.3.22356.1, 3.3.22356.3, 3.3.621.1, 3.3.22356.2, 6.2.34485560784.5, 9.9.6938632771983936.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |