Normalized defining polynomial
\( x^{18} - 3 x^{16} - 12 x^{15} + 45 x^{13} - 80 x^{12} - 180 x^{10} + 285 x^{9} - 333 x^{8} + 270 x^{7} + 459 x^{6} - 459 x^{5} + 585 x^{4} - 477 x^{3} + 81 x + 9 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(317733228541125000000000000=2^{12}\cdot 3^{26}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{15} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{7} + \frac{1}{15} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{3} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{15} a^{14} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{3} a^{8} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5}$, $\frac{1}{15} a^{15} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{3} a^{9} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{15} a^{16} + \frac{1}{5} a^{11} - \frac{2}{15} a^{10} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{2449267516897104545025} a^{17} - \frac{28307344303267418701}{2449267516897104545025} a^{16} + \frac{9178342590839484136}{816422505632368181675} a^{15} - \frac{3883951771613762209}{489853503379420909005} a^{14} - \frac{16262676235246484939}{489853503379420909005} a^{13} - \frac{3131988162842459813}{489853503379420909005} a^{12} - \frac{44304782905700493478}{489853503379420909005} a^{11} - \frac{20056467921410873798}{489853503379420909005} a^{10} - \frac{64370584055936124799}{163284501126473636335} a^{9} - \frac{190238352711575342308}{489853503379420909005} a^{8} - \frac{846175788425287774813}{2449267516897104545025} a^{7} - \frac{718617791264355915967}{2449267516897104545025} a^{6} + \frac{38518226313515821967}{816422505632368181675} a^{5} - \frac{70192074706771609706}{163284501126473636335} a^{4} + \frac{53253876329766033377}{163284501126473636335} a^{3} + \frac{30678235491132026826}{816422505632368181675} a^{2} + \frac{179751379919086294874}{816422505632368181675} a - \frac{160468445680785761267}{816422505632368181675}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4100877.0443168166 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.1.300.1, 6.2.450000.1, 9.3.1594323000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.8.6 | $x^{6} + 18 x^{2} + 36$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| 3.12.18.76 | $x^{12} + 45 x^{11} - 33 x^{10} + 6 x^{9} - 72 x^{8} + 99 x^{7} - 39 x^{6} + 27 x^{5} + 9 x^{4} - 63 x^{3} - 81 x^{2} - 54 x - 72$ | $6$ | $2$ | $18$ | $C_6\times S_3$ | $[3/2, 2]_{2}^{2}$ | |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |