Normalized defining polynomial
\( x^{18} - 12 x^{16} - 78 x^{15} + 198 x^{14} + 1128 x^{13} - 3323 x^{12} + 7344 x^{11} - 27270 x^{10} + 752 x^{9} + 37062 x^{8} + 339900 x^{7} - 830151 x^{6} + 1196208 x^{5} - 2067246 x^{4} + 1256326 x^{3} + 492588 x^{2} - 316380 x - 21697 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(315293840660890978521435310500347904=2^{33}\cdot 3^{24}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{13} + \frac{1}{7} a^{11} + \frac{2}{7} a^{10} + \frac{1}{7} a^{9} + \frac{3}{7} a^{7} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{7} a^{3} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{7} a^{16} + \frac{1}{7} a^{14} + \frac{1}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} + \frac{3}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{4} - \frac{2}{7} a^{2} - \frac{3}{7} a$, $\frac{1}{57575322562052293873217758776478816120815936369689106545} a^{17} - \frac{4062980295477093662124306073365637013009569812149575046}{57575322562052293873217758776478816120815936369689106545} a^{16} - \frac{677123605402030699957786542077149956853228167770854131}{57575322562052293873217758776478816120815936369689106545} a^{15} + \frac{21342941506486384588341916524838120506928083895406580848}{57575322562052293873217758776478816120815936369689106545} a^{14} + \frac{491266408480190004189687062689177297821479928012161686}{11515064512410458774643551755295763224163187273937821309} a^{13} + \frac{3808908622531690292666180522894129415575048065791984959}{8225046080293184839031108396639830874402276624241300935} a^{12} + \frac{548672545468609631151111243058624869309145683867535297}{8225046080293184839031108396639830874402276624241300935} a^{11} - \frac{3394170169389777783655377640772566696423842999952595152}{11515064512410458774643551755295763224163187273937821309} a^{10} - \frac{3314699212008850551606053115810196575395148533133237803}{11515064512410458774643551755295763224163187273937821309} a^{9} - \frac{18201027391801585810292966161487989881121325029017129213}{57575322562052293873217758776478816120815936369689106545} a^{8} + \frac{5510278037992785505231419125754671190296566628121811592}{11515064512410458774643551755295763224163187273937821309} a^{7} + \frac{2723557319868557958033115053989976902661871939801340122}{11515064512410458774643551755295763224163187273937821309} a^{6} + \frac{2825022738180751600513031448029822348503669287030141344}{57575322562052293873217758776478816120815936369689106545} a^{5} + \frac{7329163531503365607135556024888241791473191535530025334}{57575322562052293873217758776478816120815936369689106545} a^{4} - \frac{563048175862287287464268616679603384591926106267594152}{1645009216058636967806221679327966174880455324848260187} a^{3} + \frac{14007718738531006812314190625583350411251962572526929516}{57575322562052293873217758776478816120815936369689106545} a^{2} + \frac{1420227820497020592307905926912171960615525054351875986}{8225046080293184839031108396639830874402276624241300935} a - \frac{14613459392988270111463822104468204898683880613438173427}{57575322562052293873217758776478816120815936369689106545}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48662807084.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T155):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.148.1, 6.2.103737344.5, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.5 | $x^{6} + 6$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.8.6.1 | $x^{8} - 1147 x^{4} + 855625$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |