Normalized defining polynomial
\( x^{18} - 3 x^{16} - 69 x^{14} - 180 x^{13} - 202 x^{12} + 36 x^{11} + 669 x^{10} - 755 x^{9} - 2808 x^{8} + 14616 x^{7} + 20736 x^{6} - 58320 x^{5} - 106272 x^{4} - 20736 x^{3} + 373248 x^{2} + 186624 x - 373248 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(301336141724322998158191792033=3^{24}\cdot 37^{5}\cdot 109^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{6} a^{5} - \frac{1}{4} a^{3} + \frac{1}{12} a^{2}$, $\frac{1}{72} a^{12} - \frac{1}{24} a^{10} + \frac{1}{24} a^{8} - \frac{1}{2} a^{7} + \frac{7}{36} a^{6} - \frac{1}{2} a^{5} + \frac{7}{24} a^{4} - \frac{35}{72} a^{3}$, $\frac{1}{144} a^{13} - \frac{1}{48} a^{11} - \frac{23}{48} a^{9} - \frac{1}{4} a^{8} - \frac{29}{72} a^{7} + \frac{1}{4} a^{6} - \frac{17}{48} a^{5} - \frac{35}{144} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{864} a^{14} - \frac{1}{288} a^{12} - \frac{23}{288} a^{10} - \frac{5}{24} a^{9} - \frac{101}{432} a^{8} + \frac{1}{24} a^{7} - \frac{65}{288} a^{6} + \frac{109}{864} a^{5} - \frac{1}{4} a^{4} - \frac{1}{12} a^{3} - \frac{1}{2} a$, $\frac{1}{5184} a^{15} - \frac{1}{1728} a^{13} - \frac{23}{1728} a^{11} - \frac{5}{144} a^{10} - \frac{101}{2592} a^{9} + \frac{1}{144} a^{8} + \frac{223}{1728} a^{7} - \frac{755}{5184} a^{6} + \frac{11}{24} a^{5} - \frac{13}{72} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{10368} a^{16} - \frac{1}{3456} a^{14} - \frac{23}{3456} a^{12} - \frac{5}{288} a^{11} - \frac{101}{5184} a^{10} + \frac{1}{288} a^{9} + \frac{223}{3456} a^{8} - \frac{755}{10368} a^{7} - \frac{13}{48} a^{6} + \frac{59}{144} a^{5} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4212109145604459298018309784172288} a^{17} - \frac{11378639599637414316949746613}{702018190934076549669718297362048} a^{16} + \frac{18293294637162141103464143831}{1404036381868153099339436594724096} a^{15} - \frac{115489685839966067198964982103}{234006063644692183223239432454016} a^{14} - \frac{860629145736362580696841067759}{1404036381868153099339436594724096} a^{13} - \frac{795478250322136755934457672915}{234006063644692183223239432454016} a^{12} - \frac{45201913036881230395947575970821}{2106054572802229649009154892086144} a^{11} + \frac{8116627617687291555264075769507}{175504547733519137417429574340512} a^{10} + \frac{287844393320399769083893869871543}{1404036381868153099339436594724096} a^{9} - \frac{1604018098731782892820611250820681}{4212109145604459298018309784172288} a^{8} + \frac{245533946695134189751581570251639}{702018190934076549669718297362048} a^{7} + \frac{21417107572239135452186851216139}{58501515911173045805809858113504} a^{6} - \frac{990308214623686317610481163301}{19500505303724348601936619371168} a^{5} - \frac{2314124769823841013317826940997}{4875126325931087150484154842792} a^{4} + \frac{355147551541042005497645340551}{4875126325931087150484154842792} a^{3} + \frac{78377932236749599090752814195}{270840351440615952804675269044} a^{2} + \frac{5124698581506165519936635672}{67710087860153988201168817261} a + \frac{17354013936789024541357672424}{67710087860153988201168817261}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66577194.5022 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n401 |
| Character table for t18n401 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.2.26460513.1, 9.5.2143301553.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 37 | Data not computed | ||||||
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.4.2.1 | $x^{4} + 1199 x^{2} + 427716$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |