Normalized defining polynomial
\( x^{18} - 6 x^{17} + 12 x^{16} + 24 x^{15} - 201 x^{14} + 681 x^{13} - 2006 x^{12} + 4443 x^{11} - 4875 x^{10} - 2843 x^{9} + 8115 x^{8} + 2994 x^{7} - 3033 x^{6} + 4443 x^{5} + 2862 x^{4} + 1442 x^{3} - 2457 x^{2} + 162 x + 71 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29887202898467161742960366013=3^{24}\cdot 7^{12}\cdot 197^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5397071232325910976620471467605720389113} a^{17} - \frac{2178715048600158306852212815209986814463}{5397071232325910976620471467605720389113} a^{16} + \frac{707087942152397379080209430532983369374}{5397071232325910976620471467605720389113} a^{15} + \frac{1569950973240870754706471963027214796408}{5397071232325910976620471467605720389113} a^{14} + \frac{988561261660098198768642926023690347852}{5397071232325910976620471467605720389113} a^{13} + \frac{1232267878502421651787154601480434333918}{5397071232325910976620471467605720389113} a^{12} + \frac{1009016520388876840778506501602409157898}{5397071232325910976620471467605720389113} a^{11} + \frac{257009718893090972603067514708420727931}{5397071232325910976620471467605720389113} a^{10} - \frac{727757436743801186947403778061322010151}{5397071232325910976620471467605720389113} a^{9} - \frac{1256794566519495396285424384851311038154}{5397071232325910976620471467605720389113} a^{8} - \frac{903221287717486977114820018815042439370}{5397071232325910976620471467605720389113} a^{7} - \frac{349910994640669755102722135257613407290}{5397071232325910976620471467605720389113} a^{6} - \frac{1831792369113066583591784715307455709234}{5397071232325910976620471467605720389113} a^{5} + \frac{2038725359843565774669508862842994839160}{5397071232325910976620471467605720389113} a^{4} + \frac{1727707526732511577394343731463714787710}{5397071232325910976620471467605720389113} a^{3} + \frac{1453130266624988319005610595952019118820}{5397071232325910976620471467605720389113} a^{2} - \frac{2326194204652565414532051753848191683221}{5397071232325910976620471467605720389113} a + \frac{2436475962571234623119267865593418862445}{5397071232325910976620471467605720389113}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14123814.3583 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 48 conjugacy class representatives for t18n263 |
| Character table for t18n263 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.3969.2, 3.3.3969.1, \(\Q(\zeta_{7})^+\), 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 197 | Data not computed | ||||||