Normalized defining polynomial
\( x^{18} - 9 x^{16} - 31 x^{15} - 27 x^{14} + 108 x^{13} + 324 x^{12} + 66 x^{11} - 696 x^{10} - 942 x^{9} - 72 x^{8} + 1185 x^{7} + 329 x^{6} - 687 x^{5} + 120 x^{4} - 36 x^{3} + 39 x^{2} - 3 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29531293631851085903947077=3^{19}\cdot 31^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{2}{7} a^{13} - \frac{2}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{3}{7} a^{6} + \frac{2}{7} a^{5} + \frac{2}{7} a^{3} + \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{13} - \frac{1}{7} a^{12} - \frac{3}{7} a^{11} + \frac{2}{7} a^{10} - \frac{2}{7} a^{9} + \frac{3}{7} a^{8} + \frac{2}{7} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{49} a^{16} + \frac{1}{49} a^{15} + \frac{1}{49} a^{14} - \frac{3}{7} a^{13} + \frac{10}{49} a^{12} - \frac{22}{49} a^{11} + \frac{15}{49} a^{9} + \frac{5}{49} a^{8} - \frac{18}{49} a^{7} + \frac{4}{49} a^{6} - \frac{2}{49} a^{5} + \frac{20}{49} a^{4} + \frac{1}{49} a^{3} + \frac{1}{7} a^{2} - \frac{20}{49} a - \frac{16}{49}$, $\frac{1}{679143895114991761} a^{17} - \frac{217997220553277}{679143895114991761} a^{16} - \frac{26402311184042371}{679143895114991761} a^{15} + \frac{2019108788049740}{679143895114991761} a^{14} - \frac{15817371930147637}{52241838085768597} a^{13} - \frac{156170061924908495}{679143895114991761} a^{12} - \frac{75461285061876933}{679143895114991761} a^{11} + \frac{252721866203012956}{679143895114991761} a^{10} - \frac{13415605361589035}{97020556444998823} a^{9} + \frac{71903499429443051}{679143895114991761} a^{8} + \frac{52894564884261663}{679143895114991761} a^{7} - \frac{315169219232623400}{679143895114991761} a^{6} + \frac{253484604891211458}{679143895114991761} a^{5} + \frac{235692668818077036}{679143895114991761} a^{4} + \frac{77266854029732593}{679143895114991761} a^{3} - \frac{161722173082731134}{679143895114991761} a^{2} - \frac{38871069190915713}{97020556444998823} a - \frac{186298145363003020}{679143895114991761}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 782356.481444 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times S_4$ (as 18T65):
| A solvable group of order 144 |
| The 15 conjugacy class representatives for $S_3\times S_4$ |
| Character table for $S_3\times S_4$ |
Intermediate fields
| 3.3.837.1, 3.1.31.1, 6.2.89373.1, 9.3.18177663843.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.12.12.5 | $x^{12} + 33 x^{11} - 63 x^{10} - 36 x^{9} - 90 x^{8} - 54 x^{7} - 54 x^{6} - 108 x^{4} - 27 x^{3} - 81 x^{2} + 81 x - 81$ | $3$ | $4$ | $12$ | $S_3 \times C_4$ | $[3/2]_{2}^{4}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 31.4.2.1 | $x^{4} + 713 x^{2} + 138384$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 31.4.3.1 | $x^{4} + 217$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |