Normalized defining polynomial
\( x^{18} - 6 x^{17} + 46 x^{16} - 210 x^{15} + 700 x^{14} - 1768 x^{13} + 182 x^{12} + 16772 x^{11} - 98398 x^{10} + 330956 x^{9} - 862540 x^{8} + 1847208 x^{7} - 2851560 x^{6} + 2365244 x^{5} + 794812 x^{4} - 3987136 x^{3} + 4500304 x^{2} - 1527896 x - 2142956 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2814348094639878218243558512525312=2^{26}\cdot 19^{9}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{192754} a^{16} + \frac{9957}{96377} a^{15} - \frac{28499}{192754} a^{14} + \frac{47409}{192754} a^{13} - \frac{18689}{192754} a^{12} - \frac{16120}{96377} a^{11} + \frac{45697}{192754} a^{10} + \frac{6039}{192754} a^{9} - \frac{20324}{96377} a^{8} - \frac{13545}{96377} a^{7} - \frac{15710}{96377} a^{6} - \frac{44846}{96377} a^{5} + \frac{17220}{96377} a^{4} - \frac{47366}{96377} a^{3} + \frac{11944}{96377} a^{2} + \frac{15684}{96377} a + \frac{5199}{96377}$, $\frac{1}{133977755784650853103592521926047861205771873400944434} a^{17} - \frac{138292385595528711237194891281796492366563354262}{66988877892325426551796260963023930602885936700472217} a^{16} - \frac{26605424855559858123229134980071409767236379592154441}{133977755784650853103592521926047861205771873400944434} a^{15} + \frac{6993549784675790120409726433731522144388146025845589}{133977755784650853103592521926047861205771873400944434} a^{14} - \frac{7592059734281238904600706417935647065490166556074806}{66988877892325426551796260963023930602885936700472217} a^{13} + \frac{14441910780403904283209576738528083870507697987061649}{133977755784650853103592521926047861205771873400944434} a^{12} - \frac{1942562017073802249029770769617389499485649449152374}{66988877892325426551796260963023930602885936700472217} a^{11} - \frac{5684596180665231436707432866749968010361788784767469}{66988877892325426551796260963023930602885936700472217} a^{10} + \frac{11590553828340497893603169588016041826286309442695325}{133977755784650853103592521926047861205771873400944434} a^{9} + \frac{28365874624996845763844924767738137552048781958038078}{66988877892325426551796260963023930602885936700472217} a^{8} + \frac{23384541260542450107301868874001670536235078955473401}{66988877892325426551796260963023930602885936700472217} a^{7} + \frac{30729775031605241623730449340524494809221852207400541}{66988877892325426551796260963023930602885936700472217} a^{6} + \frac{4153958289168580707601400810353190716177225829242162}{66988877892325426551796260963023930602885936700472217} a^{5} + \frac{27793080362092190923337251941257303298441573363763127}{66988877892325426551796260963023930602885936700472217} a^{4} + \frac{644972594198718226132409013537525814279850055507628}{66988877892325426551796260963023930602885936700472217} a^{3} + \frac{10551381927391654189245744529651549598178700913550819}{66988877892325426551796260963023930602885936700472217} a^{2} - \frac{18393304692586174726008033733270458674996202821430311}{66988877892325426551796260963023930602885936700472217} a - \frac{18360216563631056915935651426374334951720192345793748}{66988877892325426551796260963023930602885936700472217}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15949327618.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.62526089134336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.12.8.1 | $x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 37 | Data not computed | ||||||