Properties

Label 18.6.27999282382...0217.3
Degree $18$
Signature $[6, 6]$
Discriminant $7^{12}\cdot 53^{6}\cdot 97^{3}$
Root discriminant $29.46$
Ramified primes $7, 53, 97$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T367

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41, -52, 121, 199, -6, -1204, 1084, 935, -1250, 212, 257, 212, -164, -26, 29, 6, -3, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 3*x^17 - 3*x^16 + 6*x^15 + 29*x^14 - 26*x^13 - 164*x^12 + 212*x^11 + 257*x^10 + 212*x^9 - 1250*x^8 + 935*x^7 + 1084*x^6 - 1204*x^5 - 6*x^4 + 199*x^3 + 121*x^2 - 52*x - 41)
 
gp: K = bnfinit(x^18 - 3*x^17 - 3*x^16 + 6*x^15 + 29*x^14 - 26*x^13 - 164*x^12 + 212*x^11 + 257*x^10 + 212*x^9 - 1250*x^8 + 935*x^7 + 1084*x^6 - 1204*x^5 - 6*x^4 + 199*x^3 + 121*x^2 - 52*x - 41, 1)
 

Normalized defining polynomial

\( x^{18} - 3 x^{17} - 3 x^{16} + 6 x^{15} + 29 x^{14} - 26 x^{13} - 164 x^{12} + 212 x^{11} + 257 x^{10} + 212 x^{9} - 1250 x^{8} + 935 x^{7} + 1084 x^{6} - 1204 x^{5} - 6 x^{4} + 199 x^{3} + 121 x^{2} - 52 x - 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(279992823820843547402730217=7^{12}\cdot 53^{6}\cdot 97^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 53, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{8} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{16} a^{16} + \frac{3}{8} a^{13} - \frac{1}{16} a^{12} + \frac{5}{16} a^{11} - \frac{1}{2} a^{10} - \frac{5}{16} a^{9} - \frac{3}{8} a^{8} + \frac{3}{16} a^{7} + \frac{5}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{2} a^{4} + \frac{1}{16} a^{3} + \frac{5}{16} a^{2} - \frac{7}{16} a + \frac{3}{16}$, $\frac{1}{3904909500635636764065328} a^{17} + \frac{19146621981832716864361}{976227375158909191016332} a^{16} + \frac{8408555928319037906795}{488113687579454595508166} a^{15} - \frac{189058761323210445681229}{1952454750317818382032664} a^{14} + \frac{1862211639886036340710351}{3904909500635636764065328} a^{13} - \frac{632778111404317693476263}{3904909500635636764065328} a^{12} + \frac{481334203840892581142449}{976227375158909191016332} a^{11} - \frac{659689095794320766345893}{3904909500635636764065328} a^{10} - \frac{202381714089470761392573}{1952454750317818382032664} a^{9} + \frac{509295407038309946909251}{3904909500635636764065328} a^{8} - \frac{1891828700154080048013391}{3904909500635636764065328} a^{7} + \frac{1809002743865040507674307}{3904909500635636764065328} a^{6} - \frac{198752181305821815528643}{976227375158909191016332} a^{5} + \frac{905850225751379895606593}{3904909500635636764065328} a^{4} - \frac{854068343877986611459487}{3904909500635636764065328} a^{3} + \frac{906841290465243274501997}{3904909500635636764065328} a^{2} - \frac{1726813352035914690792033}{3904909500635636764065328} a + \frac{341618450809269218840381}{976227375158909191016332}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1514838.38528 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T367:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2304
The 48 conjugacy class representatives for t18n367
Character table for t18n367 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$53$53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.12.6.1$x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$97$$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
97.2.1.1$x^{2} - 97$$2$$1$$1$$C_2$$[\ ]_{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.1.1$x^{2} - 97$$2$$1$$1$$C_2$$[\ ]_{2}$
97.2.1.1$x^{2} - 97$$2$$1$$1$$C_2$$[\ ]_{2}$