Normalized defining polynomial
\( x^{18} - 8 x^{17} + 51 x^{16} - 236 x^{15} + 681 x^{14} - 1198 x^{13} - 3534 x^{12} + 18560 x^{11} - 50254 x^{10} + 36650 x^{9} + 194059 x^{8} - 165414 x^{7} + 1640355 x^{6} + 3243870 x^{5} + 1978647 x^{4} + 8119890 x^{3} + 14798234 x^{2} - 8630734 x - 21520927 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2688406910504947110220610513666048=2^{18}\cdot 37^{6}\cdot 97^{3}\cdot 16361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{100762597505709780055882323320147611015052712356958276070159926801} a^{17} - \frac{11568853589984661530168530129996364726649769814203346809963696324}{100762597505709780055882323320147611015052712356958276070159926801} a^{16} - \frac{1939719179203902684580759617280193942947956490869346330014686398}{100762597505709780055882323320147611015052712356958276070159926801} a^{15} + \frac{4346403287314819384541129228098454149750201622588084241677489507}{11195844167301086672875813702238623446116968039662030674462214089} a^{14} - \frac{16357185885181512800097113464907055689498529413465797122469468429}{33587532501903260018627441106715870338350904118986092023386642267} a^{13} + \frac{38442523487834306433357117741989931629863524388302988924461109193}{100762597505709780055882323320147611015052712356958276070159926801} a^{12} + \frac{33411852232673733356589183564291053314507326397373369713195382816}{100762597505709780055882323320147611015052712356958276070159926801} a^{11} + \frac{16425591092249927160633435820502210989412965910120770069608233653}{100762597505709780055882323320147611015052712356958276070159926801} a^{10} - \frac{243666526000673038309353244506679255462044049890212924184900823}{33587532501903260018627441106715870338350904118986092023386642267} a^{9} + \frac{20341571001793387727168899194472816854059760063600428498196275633}{100762597505709780055882323320147611015052712356958276070159926801} a^{8} - \frac{12932542949567926080278937291830340706875463585874074046113148375}{33587532501903260018627441106715870338350904118986092023386642267} a^{7} + \frac{3472097454516297991945328043424091522331111655487410972653482113}{11195844167301086672875813702238623446116968039662030674462214089} a^{6} + \frac{8639687183265266585911128147961713389801476914391804880259192098}{33587532501903260018627441106715870338350904118986092023386642267} a^{5} - \frac{14591887146623078726436857918496805907093919370297786058734120009}{33587532501903260018627441106715870338350904118986092023386642267} a^{4} - \frac{5558648452047446832265472423343400130444265425705347405471491593}{33587532501903260018627441106715870338350904118986092023386642267} a^{3} + \frac{16530585166267076997471067245121347981602880873164297963764676995}{33587532501903260018627441106715870338350904118986092023386642267} a^{2} + \frac{33914156958534153670499940251063993575107430026353501106517239113}{100762597505709780055882323320147611015052712356958276070159926801} a - \frac{39520135483766244495538762311845108464670189559567229832411301824}{100762597505709780055882323320147611015052712356958276070159926801}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2489363724.08 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n837 are not computed |
| Character table for t18n837 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37.8.4.1 | $x^{8} + 5476 x^{4} - 50653 x^{2} + 7496644$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 16361 | Data not computed | ||||||