Properties

Label 18.6.25913712707...2457.1
Degree $18$
Signature $[6, 6]$
Discriminant $7^{15}\cdot 13^{5}\cdot 43^{5}$
Root discriminant $29.34$
Ramified primes $7, 13, 43$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T696

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-41, 320, -977, 1698, -482, -1144, 3257, -2770, 1517, 1040, -1502, 506, 172, -126, -8, 6, 10, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 + 10*x^16 + 6*x^15 - 8*x^14 - 126*x^13 + 172*x^12 + 506*x^11 - 1502*x^10 + 1040*x^9 + 1517*x^8 - 2770*x^7 + 3257*x^6 - 1144*x^5 - 482*x^4 + 1698*x^3 - 977*x^2 + 320*x - 41)
 
gp: K = bnfinit(x^18 - 6*x^17 + 10*x^16 + 6*x^15 - 8*x^14 - 126*x^13 + 172*x^12 + 506*x^11 - 1502*x^10 + 1040*x^9 + 1517*x^8 - 2770*x^7 + 3257*x^6 - 1144*x^5 - 482*x^4 + 1698*x^3 - 977*x^2 + 320*x - 41, 1)
 

Normalized defining polynomial

\( x^{18} - 6 x^{17} + 10 x^{16} + 6 x^{15} - 8 x^{14} - 126 x^{13} + 172 x^{12} + 506 x^{11} - 1502 x^{10} + 1040 x^{9} + 1517 x^{8} - 2770 x^{7} + 3257 x^{6} - 1144 x^{5} - 482 x^{4} + 1698 x^{3} - 977 x^{2} + 320 x - 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(259137127072607416174362457=7^{15}\cdot 13^{5}\cdot 43^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $29.34$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 13, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{1195418572957408581397860886} a^{17} + \frac{253694509362149734300842065}{1195418572957408581397860886} a^{16} - \frac{19419326673005135119213095}{597709286478704290698930443} a^{15} + \frac{57715967386824243075727335}{1195418572957408581397860886} a^{14} + \frac{56310195279960038238533907}{1195418572957408581397860886} a^{13} - \frac{73546155387943639940114314}{597709286478704290698930443} a^{12} + \frac{158854138144641421244008335}{1195418572957408581397860886} a^{11} + \frac{138049090975997239762188413}{1195418572957408581397860886} a^{10} + \frac{81399613881342602678584294}{597709286478704290698930443} a^{9} + \frac{270080856926005218385642247}{597709286478704290698930443} a^{8} + \frac{193083622431551736965568233}{1195418572957408581397860886} a^{7} + \frac{551947996304521406882478255}{1195418572957408581397860886} a^{6} + \frac{520406594568770287307435383}{1195418572957408581397860886} a^{5} - \frac{230268506888524972269560714}{597709286478704290698930443} a^{4} - \frac{190890106471674707610802537}{597709286478704290698930443} a^{3} + \frac{178535439710049843375374155}{1195418572957408581397860886} a^{2} + \frac{292516698589867118835821113}{597709286478704290698930443} a - \frac{270239424442237592031164609}{597709286478704290698930443}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1363651.29707 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T696:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 41472
The 192 conjugacy class representatives for t18n696 are not computed
Character table for t18n696 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 9.9.36763077169.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ $18$ R $18$ R ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ $18$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$13$13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
13.6.5.4$x^{6} + 26$$6$$1$$5$$C_6$$[\ ]_{6}$
13.6.0.1$x^{6} + x^{2} - 2 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
43Data not computed