Normalized defining polynomial
\( x^{18} - 6 x^{17} + 10 x^{16} + 6 x^{15} - 8 x^{14} - 126 x^{13} + 172 x^{12} + 506 x^{11} - 1502 x^{10} + 1040 x^{9} + 1517 x^{8} - 2770 x^{7} + 3257 x^{6} - 1144 x^{5} - 482 x^{4} + 1698 x^{3} - 977 x^{2} + 320 x - 41 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(259137127072607416174362457=7^{15}\cdot 13^{5}\cdot 43^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{1195418572957408581397860886} a^{17} + \frac{253694509362149734300842065}{1195418572957408581397860886} a^{16} - \frac{19419326673005135119213095}{597709286478704290698930443} a^{15} + \frac{57715967386824243075727335}{1195418572957408581397860886} a^{14} + \frac{56310195279960038238533907}{1195418572957408581397860886} a^{13} - \frac{73546155387943639940114314}{597709286478704290698930443} a^{12} + \frac{158854138144641421244008335}{1195418572957408581397860886} a^{11} + \frac{138049090975997239762188413}{1195418572957408581397860886} a^{10} + \frac{81399613881342602678584294}{597709286478704290698930443} a^{9} + \frac{270080856926005218385642247}{597709286478704290698930443} a^{8} + \frac{193083622431551736965568233}{1195418572957408581397860886} a^{7} + \frac{551947996304521406882478255}{1195418572957408581397860886} a^{6} + \frac{520406594568770287307435383}{1195418572957408581397860886} a^{5} - \frac{230268506888524972269560714}{597709286478704290698930443} a^{4} - \frac{190890106471674707610802537}{597709286478704290698930443} a^{3} + \frac{178535439710049843375374155}{1195418572957408581397860886} a^{2} + \frac{292516698589867118835821113}{597709286478704290698930443} a - \frac{270239424442237592031164609}{597709286478704290698930443}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1363651.29707 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 41472 |
| The 192 conjugacy class representatives for t18n696 are not computed |
| Character table for t18n696 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.36763077169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | $18$ | R | $18$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | $18$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.5.4 | $x^{6} + 26$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 43 | Data not computed | ||||||