Normalized defining polynomial
\( x^{18} - 5 x^{17} + 17 x^{16} - 26 x^{15} - 97 x^{14} + 413 x^{13} - 3516 x^{12} + 4203 x^{11} - 7019 x^{10} - 56398 x^{9} + 398451 x^{8} - 800673 x^{7} + 337971 x^{6} + 7233538 x^{5} - 17698768 x^{4} - 6903624 x^{3} + 52507872 x^{2} - 23700060 x - 30249612 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25335674079416182011223462348869632=2^{12}\cdot 7^{12}\cdot 197^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a$, $\frac{1}{612} a^{15} + \frac{19}{306} a^{14} + \frac{91}{612} a^{13} - \frac{97}{612} a^{12} - \frac{7}{306} a^{11} - \frac{89}{204} a^{10} + \frac{91}{204} a^{9} + \frac{10}{51} a^{8} + \frac{211}{612} a^{7} - \frac{73}{204} a^{6} - \frac{16}{51} a^{5} + \frac{29}{68} a^{4} + \frac{10}{51} a^{3} + \frac{58}{153} a^{2} + \frac{49}{102} a - \frac{5}{17}$, $\frac{1}{612} a^{16} - \frac{3}{68} a^{14} + \frac{5}{204} a^{13} + \frac{1}{6} a^{12} + \frac{163}{612} a^{11} + \frac{13}{68} a^{10} - \frac{13}{51} a^{9} + \frac{241}{612} a^{8} + \frac{25}{612} a^{7} + \frac{23}{51} a^{6} - \frac{31}{204} a^{5} + \frac{25}{51} a^{4} + \frac{131}{306} a^{3} + \frac{23}{306} a^{2} + \frac{2}{17} a + \frac{3}{17}$, $\frac{1}{988278457511864310376885983768422484753311765194102690927380} a^{17} - \frac{305552472356606835998680813702487120917216368919066562959}{494139228755932155188442991884211242376655882597051345463690} a^{16} - \frac{46311304243997434437553037615045339642117366460122421379}{988278457511864310376885983768422484753311765194102690927380} a^{15} + \frac{79830491264871473195806943009312569959609466345096322628301}{988278457511864310376885983768422484753311765194102690927380} a^{14} + \frac{1112466457355009957148941636244467826705579349246021352788}{49413922875593215518844299188421124237665588259705134546369} a^{13} - \frac{219145632137557503780580495303574318330539190697429081783277}{988278457511864310376885983768422484753311765194102690927380} a^{12} - \frac{6052017893973314121057817222497939587415693413948704771087}{65885230500790954025125732251228165650220784346273512728492} a^{11} - \frac{8241920136254867131832750609826507527472529693791169582163}{18301452916886376118090481180896712680616884540631531313470} a^{10} - \frac{296374268830683704202223534777704915247148938173494733685763}{988278457511864310376885983768422484753311765194102690927380} a^{9} + \frac{201809906727227831590751914476354760697320287241880069599391}{988278457511864310376885983768422484753311765194102690927380} a^{8} - \frac{2518317232386019983774463521587413558896422098302579914737}{164713076251977385062814330628070414125551960865683781821230} a^{7} - \frac{6630011852082628505748631709118426588610403247232352284669}{29947832045814070011420787386921893477373083793760687603860} a^{6} + \frac{26759503862443521021331734711588446955248096372149068531017}{164713076251977385062814330628070414125551960865683781821230} a^{5} + \frac{74529651451771804944184413192801750970461402193593847639601}{494139228755932155188442991884211242376655882597051345463690} a^{4} - \frac{28079825046007532951141389582927187770699342921394743487867}{494139228755932155188442991884211242376655882597051345463690} a^{3} + \frac{38016215848522165872042714447549198525297841675074254112119}{82356538125988692531407165314035207062775980432841890910615} a^{2} + \frac{964717436737498197342647206335929144004514003633211497133}{2495652670484505834285065615576824456447756982813390633655} a - \frac{2981664500985577255144029894088383232914757459735788591893}{9150726458443188059045240590448356340308442270315765656735}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14150853991.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3:S_4$ |
| Character table for $C_3:S_4$ |
Intermediate fields
| 3.3.38612.1, 3.3.38612.2, 3.3.9653.1, 3.3.788.1, 6.2.122325968.1, 9.9.11340523913674816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 197 | Data not computed | ||||||