Normalized defining polynomial
\( x^{18} - 7 x^{16} - 40 x^{15} - 2534 x^{14} - 7327 x^{13} - 63408 x^{12} - 133706 x^{11} + 234973 x^{10} + 334707 x^{9} + 17540223 x^{8} - 11745224 x^{7} + 129255659 x^{6} - 399346834 x^{5} + 162279935 x^{4} - 2344374796 x^{3} + 1466353619 x^{2} + 6558041127 x - 7411396451 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(252784711330137595917755359152316874752=2^{18}\cdot 19^{8}\cdot 97^{5}\cdot 137^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $135.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 97, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{17} + \frac{1766369164295339017645792577476733954556122750600548497636025266598448991964751349686295}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{16} - \frac{1283604953619208205737816944029129143070814234988761191815194113272596345479769535364493}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{15} - \frac{167664460501633489923649030813599311952279359436735829271573639079095439258591281449047}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{14} - \frac{1024710745329581777029816842529835374171546517490065451244174594268984048673362635593613}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{13} - \frac{1030174486907945224043599778348371728073826207120405056191246397460951611566600411532670}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{12} - \frac{863203148250313907417649345165332289642868081450439927857081194859961503735278989210311}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{11} + \frac{1325738847135474333279988997183491228048499271152069802834279224510234709000423828767583}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{10} - \frac{214185259331504497162014811952226679435816976691093144043652676861344714733059091254946}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{9} - \frac{1894392063075728880421126248129649357070920237894067963105106338326027251887995889110524}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{8} + \frac{1743767252252758145748991634309706582282068511581411098206533446775025220878522229358953}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{7} - \frac{1976015209284130402356590310610016954789704161857897550005455627002066844136919759621770}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{6} + \frac{1178162086195603570418703609110392854286825943811347975199827803878344228813532625362828}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{5} + \frac{1635611756430357918384682519182088912973272663668983919706506656859202543419875242897676}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{4} + \frac{1298447815701824546321864113714559060793556649794828695948829328694398447493097107892353}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{3} + \frac{217928907321405473654495732830870874130795935574647509678210561442099710124113713049467}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a^{2} + \frac{418603648689445930014603710614833639116258243844734190941318862208453186558350938492406}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683} a - \frac{1003956859220620835158205211809940685842650388108571398040415936550603189739600524943732}{4374298011067713196335264653379637425960893968492201306661002561208030989278881985509683}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1098244687010 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36864 |
| The 108 conjugacy class representatives for t18n691 are not computed |
| Character table for t18n691 is not computed |
Intermediate fields
| 9.9.1128762254528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.18.65 | $x^{12} + 12 x^{11} + 8 x^{10} + 4 x^{9} + 16 x^{8} - 12 x^{7} - 8 x^{6} + 8 x^{5} - 12 x^{4} + 16 x^{3} - 8$ | $4$ | $3$ | $18$ | $D_4 \times C_3$ | $[2, 2]^{6}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.8.6.2 | $x^{8} - 19 x^{4} + 5776$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 97 | Data not computed | ||||||
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.4.0.1 | $x^{4} - x + 26$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 137.4.2.1 | $x^{4} + 1507 x^{2} + 675684$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 137.8.4.1 | $x^{8} + 975988 x^{4} - 2571353 x^{2} + 238138144036$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |