Normalized defining polynomial
\( x^{18} - 78 x^{16} - 81 x^{15} + 2457 x^{14} + 5265 x^{13} - 34159 x^{12} - 132678 x^{11} + 22074 x^{10} + 1405728 x^{9} + 5412366 x^{8} - 41067 x^{7} - 58047869 x^{6} - 118584243 x^{5} + 65849253 x^{4} + 627375267 x^{3} + 1416311388 x^{2} + 1211190408 x - 230193199 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(250417598033443973119558886865438775705553927661=3\cdot 7\cdot 257^{6}\cdot 1637^{3}\cdot 21130037^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $429.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 257, 1637, 21130037$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{6} - \frac{2}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{7} - \frac{2}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{1}{9} a^{6} - \frac{2}{9} a^{4} + \frac{1}{3} a^{2} - \frac{1}{9}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{11} - \frac{1}{9} a^{9} + \frac{1}{9} a^{7} - \frac{2}{9} a^{5} + \frac{1}{3} a^{3} - \frac{1}{9} a$, $\frac{1}{45} a^{16} + \frac{1}{45} a^{15} + \frac{1}{45} a^{14} - \frac{2}{45} a^{13} - \frac{2}{45} a^{12} - \frac{1}{15} a^{11} - \frac{1}{15} a^{10} + \frac{1}{9} a^{9} + \frac{1}{15} a^{7} - \frac{2}{15} a^{6} + \frac{16}{45} a^{5} - \frac{11}{45} a^{4} - \frac{11}{45} a^{3} - \frac{11}{45} a^{2} + \frac{2}{5} a + \frac{13}{45}$, $\frac{1}{4956230587713803578843655617781158968392706667010299040415} a^{17} + \frac{54930425654006320077788162514170525249396545684540575257}{4956230587713803578843655617781158968392706667010299040415} a^{16} - \frac{149731283805955397547067753881482481233701871684641770143}{4956230587713803578843655617781158968392706667010299040415} a^{15} - \frac{32684807417801700700984540712464527338590523543802044686}{4956230587713803578843655617781158968392706667010299040415} a^{14} + \frac{117732299215978675401873405731124104974872001387476437386}{4956230587713803578843655617781158968392706667010299040415} a^{13} + \frac{32484429440088379270996665099855333484039490418822971983}{991246117542760715768731123556231793678541333402059808083} a^{12} - \frac{26388417184594115560752043521345097545205434406694696894}{550692287523755953204850624197906552043634074112255448935} a^{11} + \frac{72548420919957303034683835958414471726398070167104607913}{550692287523755953204850624197906552043634074112255448935} a^{10} - \frac{36070681558631360167651722370486174600621365730113417566}{330415372514253571922910374518743931226180444467353269361} a^{9} + \frac{188127277854920344467346060110013648452870307782084857251}{1652076862571267859614551872593719656130902222336766346805} a^{8} - \frac{131073950151084021273974705346655850897328111437527909951}{1652076862571267859614551872593719656130902222336766346805} a^{7} + \frac{34560665419494251507820042466664876322332149663978840571}{330415372514253571922910374518743931226180444467353269361} a^{6} - \frac{271442127781196959767277337957502395961814963259473582009}{991246117542760715768731123556231793678541333402059808083} a^{5} + \frac{2261185132915880756997165872229838949822995007420598445973}{4956230587713803578843655617781158968392706667010299040415} a^{4} + \frac{572666540045175179974910698091995304605605563930098834303}{4956230587713803578843655617781158968392706667010299040415} a^{3} - \frac{1182411868458669423379830049317799594661547976192723725763}{4956230587713803578843655617781158968392706667010299040415} a^{2} - \frac{1812962479088425280825957181442870617338459632659706386164}{4956230587713803578843655617781158968392706667010299040415} a + \frac{1252333545066783515375319311272144496194140978804218801663}{4956230587713803578843655617781158968392706667010299040415}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 190358474398000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2239488 |
| The 255 conjugacy class representatives for t18n945 are not computed |
| Character table for t18n945 is not computed |
Intermediate fields
| 3.3.257.1, 6.2.2284626361211881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 257 | Data not computed | ||||||
| 1637 | Data not computed | ||||||
| 21130037 | Data not computed | ||||||