Normalized defining polynomial
\( x^{18} - 5 x^{17} + 7 x^{16} + 16 x^{15} - 91 x^{14} + 167 x^{13} - 30 x^{12} - 603 x^{11} + 1685 x^{10} - 2340 x^{9} + 1056 x^{8} + 3080 x^{7} - 8750 x^{6} + 12400 x^{5} - 11093 x^{4} + 5864 x^{3} - 1091 x^{2} - 597 x + 281 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2498967585584686901883289=7^{12}\cdot 13^{4}\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{29} a^{15} - \frac{4}{29} a^{14} + \frac{6}{29} a^{13} - \frac{4}{29} a^{12} + \frac{8}{29} a^{11} - \frac{8}{29} a^{10} + \frac{13}{29} a^{9} - \frac{1}{29} a^{8} + \frac{8}{29} a^{7} + \frac{6}{29} a^{6} - \frac{2}{29} a^{5} - \frac{3}{29} a^{4} + \frac{2}{29} a^{3} + \frac{9}{29} a^{2} + \frac{13}{29} a - \frac{11}{29}$, $\frac{1}{29} a^{16} - \frac{10}{29} a^{14} - \frac{9}{29} a^{13} - \frac{8}{29} a^{12} - \frac{5}{29} a^{11} + \frac{10}{29} a^{10} - \frac{7}{29} a^{9} + \frac{4}{29} a^{8} + \frac{9}{29} a^{7} - \frac{7}{29} a^{6} - \frac{11}{29} a^{5} - \frac{10}{29} a^{4} - \frac{12}{29} a^{3} - \frac{9}{29} a^{2} + \frac{12}{29} a + \frac{14}{29}$, $\frac{1}{10908470121486425153} a^{17} + \frac{44760244950623273}{10908470121486425153} a^{16} + \frac{74451096320604494}{10908470121486425153} a^{15} + \frac{2790040122748091870}{10908470121486425153} a^{14} + \frac{2186199117526567214}{10908470121486425153} a^{13} + \frac{2002612581930110909}{10908470121486425153} a^{12} - \frac{1439918674323683795}{10908470121486425153} a^{11} + \frac{3150560250954752289}{10908470121486425153} a^{10} + \frac{4219427574052161895}{10908470121486425153} a^{9} - \frac{85019533209546628}{10908470121486425153} a^{8} + \frac{2609454388580565024}{10908470121486425153} a^{7} + \frac{1257123066742223399}{10908470121486425153} a^{6} - \frac{3303931907503169719}{10908470121486425153} a^{5} - \frac{11989421696192156}{10908470121486425153} a^{4} - \frac{2476426935863623614}{10908470121486425153} a^{3} + \frac{750410982841940056}{10908470121486425153} a^{2} + \frac{1270656606332139869}{10908470121486425153} a + \frac{1682689385638027191}{10908470121486425153}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 159759.944289 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 32 conjugacy class representatives for t18n473 |
| Character table for t18n473 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.36763077169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43 | Data not computed | ||||||