Properties

Label 18.6.242...096.1
Degree $18$
Signature $[6, 6]$
Discriminant $2.425\times 10^{50}$
Root discriminant \(629.72\)
Ramified primes $2,3,7,17$
Class number $18$ (GRH)
Class group [3, 6] (GRH)
Galois group $C_3^2:D_6$ (as 18T52)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 375*x^16 + 2368*x^15 + 55431*x^14 - 341010*x^13 - 4247625*x^12 + 18225072*x^11 + 196851960*x^10 - 28919560*x^9 - 6546800460*x^8 - 21584096256*x^7 + 115261502192*x^6 + 462960621216*x^5 - 651006518256*x^4 - 487285125888*x^3 + 7129891302912*x^2 - 13932663541632*x + 6790409053632)
 
gp: K = bnfinit(y^18 - 6*y^17 - 375*y^16 + 2368*y^15 + 55431*y^14 - 341010*y^13 - 4247625*y^12 + 18225072*y^11 + 196851960*y^10 - 28919560*y^9 - 6546800460*y^8 - 21584096256*y^7 + 115261502192*y^6 + 462960621216*y^5 - 651006518256*y^4 - 487285125888*y^3 + 7129891302912*y^2 - 13932663541632*y + 6790409053632, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^18 - 6*x^17 - 375*x^16 + 2368*x^15 + 55431*x^14 - 341010*x^13 - 4247625*x^12 + 18225072*x^11 + 196851960*x^10 - 28919560*x^9 - 6546800460*x^8 - 21584096256*x^7 + 115261502192*x^6 + 462960621216*x^5 - 651006518256*x^4 - 487285125888*x^3 + 7129891302912*x^2 - 13932663541632*x + 6790409053632);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^18 - 6*x^17 - 375*x^16 + 2368*x^15 + 55431*x^14 - 341010*x^13 - 4247625*x^12 + 18225072*x^11 + 196851960*x^10 - 28919560*x^9 - 6546800460*x^8 - 21584096256*x^7 + 115261502192*x^6 + 462960621216*x^5 - 651006518256*x^4 - 487285125888*x^3 + 7129891302912*x^2 - 13932663541632*x + 6790409053632)
 

\( x^{18} - 6 x^{17} - 375 x^{16} + 2368 x^{15} + 55431 x^{14} - 341010 x^{13} - 4247625 x^{12} + \cdots + 6790409053632 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $18$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(242459919475028479855663400956723947300369356292096\) \(\medspace = 2^{33}\cdot 3^{30}\cdot 7^{12}\cdot 17^{13}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(629.72\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}3^{11/6}7^{2/3}17^{5/6}\approx 1036.056453367024$
Ramified primes:   \(2\), \(3\), \(7\), \(17\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{34}) \)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{24}a^{9}+\frac{1}{8}a^{7}-\frac{1}{4}a^{6}-\frac{1}{8}a^{5}+\frac{5}{24}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{96}a^{10}-\frac{1}{48}a^{9}+\frac{3}{32}a^{8}+\frac{1}{8}a^{7}-\frac{3}{32}a^{6}+\frac{3}{16}a^{5}+\frac{47}{96}a^{4}-\frac{7}{24}a^{3}-\frac{1}{4}a^{2}-\frac{3}{8}$, $\frac{1}{96}a^{11}+\frac{1}{96}a^{9}+\frac{1}{16}a^{8}+\frac{1}{32}a^{7}-\frac{1}{96}a^{5}+\frac{7}{16}a^{4}-\frac{1}{24}a^{3}+\frac{3}{8}a+\frac{1}{4}$, $\frac{1}{91392}a^{12}+\frac{13}{15232}a^{11}-\frac{19}{13056}a^{10}+\frac{65}{3808}a^{9}+\frac{2803}{30464}a^{8}-\frac{2809}{15232}a^{7}+\frac{10685}{91392}a^{6}-\frac{17}{224}a^{5}+\frac{6179}{45696}a^{4}+\frac{1671}{3808}a^{3}-\frac{1759}{7616}a^{2}-\frac{183}{476}a+\frac{677}{3808}$, $\frac{1}{274176}a^{13}+\frac{1}{274176}a^{12}-\frac{197}{39168}a^{11}+\frac{443}{91392}a^{10}+\frac{1795}{91392}a^{9}+\frac{367}{91392}a^{8}+\frac{54659}{274176}a^{7}+\frac{41399}{274176}a^{6}-\frac{6197}{137088}a^{5}-\frac{17837}{45696}a^{4}+\frac{11275}{22848}a^{3}-\frac{605}{1344}a^{2}-\frac{437}{3808}a-\frac{57}{544}$, $\frac{1}{469389312}a^{14}+\frac{409}{234694656}a^{13}-\frac{331}{469389312}a^{12}-\frac{37115}{7334208}a^{11}-\frac{238537}{52154368}a^{10}-\frac{386985}{26077184}a^{9}-\frac{34125673}{469389312}a^{8}+\frac{110545}{29336832}a^{7}+\frac{649889}{14668416}a^{6}-\frac{3495379}{29336832}a^{5}+\frac{508159}{6519296}a^{4}+\frac{1019369}{2444736}a^{3}-\frac{252283}{1396992}a^{2}-\frac{429557}{1629824}a+\frac{164753}{465664}$, $\frac{1}{1408167936}a^{15}-\frac{1}{22351872}a^{13}+\frac{205}{100583424}a^{12}+\frac{199917}{52154368}a^{11}+\frac{14401}{7334208}a^{10}+\frac{2105099}{1408167936}a^{9}+\frac{639565}{33527808}a^{8}+\frac{4519517}{29336832}a^{7}+\frac{3951331}{22002624}a^{6}-\frac{12016555}{58673664}a^{5}+\frac{4818095}{9778944}a^{4}+\frac{12402487}{29336832}a^{3}+\frac{216719}{1222368}a^{2}-\frac{77599}{3259648}a-\frac{85343}{232832}$, $\frac{1}{16875484545024}a^{16}-\frac{1081}{8437742272512}a^{15}-\frac{1385}{1875053838336}a^{14}+\frac{999863}{1054717784064}a^{13}+\frac{65556473}{16875484545024}a^{12}-\frac{6695885141}{2812580757504}a^{11}-\frac{7200092485}{2410783506432}a^{10}-\frac{8774392387}{1054717784064}a^{9}+\frac{205155725309}{2812580757504}a^{8}-\frac{9388334705}{1054717784064}a^{7}-\frac{524874552889}{2109435568128}a^{6}-\frac{304473887}{2092694016}a^{5}+\frac{3136147057}{21973287168}a^{4}+\frac{17454583775}{175786297344}a^{3}-\frac{5795913525}{39063621632}a^{2}-\frac{606647203}{2441476352}a-\frac{9529092883}{19531810816}$, $\frac{1}{76\!\cdots\!12}a^{17}-\frac{58\!\cdots\!65}{38\!\cdots\!56}a^{16}-\frac{11\!\cdots\!97}{76\!\cdots\!12}a^{15}-\frac{11\!\cdots\!71}{11\!\cdots\!08}a^{14}+\frac{18\!\cdots\!15}{10\!\cdots\!16}a^{13}+\frac{20\!\cdots\!29}{38\!\cdots\!56}a^{12}-\frac{23\!\cdots\!51}{76\!\cdots\!12}a^{11}-\frac{99\!\cdots\!41}{11\!\cdots\!08}a^{10}-\frac{50\!\cdots\!61}{38\!\cdots\!56}a^{9}-\frac{40\!\cdots\!07}{68\!\cdots\!76}a^{8}+\frac{22\!\cdots\!43}{95\!\cdots\!64}a^{7}-\frac{53\!\cdots\!55}{29\!\cdots\!52}a^{6}-\frac{14\!\cdots\!45}{99\!\cdots\!84}a^{5}+\frac{73\!\cdots\!83}{79\!\cdots\!72}a^{4}-\frac{49\!\cdots\!95}{22\!\cdots\!92}a^{3}-\frac{74\!\cdots\!19}{23\!\cdots\!52}a^{2}+\frac{42\!\cdots\!29}{88\!\cdots\!08}a-\frac{90\!\cdots\!69}{27\!\cdots\!44}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$, $3$

Class group and class number

$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{46\!\cdots\!45}{28\!\cdots\!44}a^{17}-\frac{11\!\cdots\!33}{14\!\cdots\!72}a^{16}-\frac{10\!\cdots\!33}{16\!\cdots\!32}a^{15}+\frac{11\!\cdots\!49}{35\!\cdots\!68}a^{14}+\frac{15\!\cdots\!69}{16\!\cdots\!32}a^{13}-\frac{67\!\cdots\!23}{14\!\cdots\!72}a^{12}-\frac{21\!\cdots\!87}{28\!\cdots\!44}a^{11}+\frac{82\!\cdots\!11}{35\!\cdots\!68}a^{10}+\frac{49\!\cdots\!07}{14\!\cdots\!72}a^{9}+\frac{45\!\cdots\!77}{17\!\cdots\!84}a^{8}-\frac{37\!\cdots\!25}{35\!\cdots\!68}a^{7}-\frac{20\!\cdots\!65}{44\!\cdots\!96}a^{6}+\frac{22\!\cdots\!73}{14\!\cdots\!32}a^{5}+\frac{26\!\cdots\!43}{29\!\cdots\!64}a^{4}-\frac{19\!\cdots\!13}{59\!\cdots\!28}a^{3}-\frac{34\!\cdots\!81}{24\!\cdots\!72}a^{2}+\frac{11\!\cdots\!83}{98\!\cdots\!88}a-\frac{51\!\cdots\!51}{61\!\cdots\!68}$, $\frac{59\!\cdots\!61}{59\!\cdots\!96}a^{17}-\frac{64\!\cdots\!51}{11\!\cdots\!92}a^{16}-\frac{11\!\cdots\!57}{29\!\cdots\!48}a^{15}+\frac{24\!\cdots\!31}{11\!\cdots\!92}a^{14}+\frac{69\!\cdots\!33}{12\!\cdots\!16}a^{13}-\frac{72\!\cdots\!55}{25\!\cdots\!32}a^{12}-\frac{27\!\cdots\!09}{62\!\cdots\!08}a^{11}+\frac{10\!\cdots\!27}{83\!\cdots\!44}a^{10}+\frac{41\!\cdots\!51}{20\!\cdots\!36}a^{9}+\frac{10\!\cdots\!01}{41\!\cdots\!72}a^{8}-\frac{48\!\cdots\!23}{78\!\cdots\!76}a^{7}-\frac{91\!\cdots\!17}{31\!\cdots\!04}a^{6}+\frac{30\!\cdots\!45}{39\!\cdots\!88}a^{5}+\frac{75\!\cdots\!33}{13\!\cdots\!96}a^{4}+\frac{81\!\cdots\!87}{18\!\cdots\!28}a^{3}-\frac{89\!\cdots\!97}{52\!\cdots\!84}a^{2}-\frac{11\!\cdots\!97}{13\!\cdots\!96}a+\frac{33\!\cdots\!05}{26\!\cdots\!92}$, $\frac{51\!\cdots\!43}{38\!\cdots\!56}a^{17}-\frac{11\!\cdots\!85}{11\!\cdots\!08}a^{16}-\frac{19\!\cdots\!91}{38\!\cdots\!56}a^{15}+\frac{11\!\cdots\!15}{27\!\cdots\!04}a^{14}+\frac{28\!\cdots\!95}{38\!\cdots\!56}a^{13}-\frac{60\!\cdots\!61}{95\!\cdots\!64}a^{12}-\frac{20\!\cdots\!61}{38\!\cdots\!56}a^{11}+\frac{81\!\cdots\!03}{19\!\cdots\!28}a^{10}+\frac{38\!\cdots\!53}{19\!\cdots\!28}a^{9}-\frac{10\!\cdots\!47}{95\!\cdots\!64}a^{8}-\frac{34\!\cdots\!33}{68\!\cdots\!76}a^{7}-\frac{34\!\cdots\!83}{23\!\cdots\!16}a^{6}+\frac{11\!\cdots\!89}{19\!\cdots\!68}a^{5}+\frac{10\!\cdots\!37}{39\!\cdots\!36}a^{4}+\frac{15\!\cdots\!41}{79\!\cdots\!72}a^{3}-\frac{15\!\cdots\!23}{44\!\cdots\!04}a^{2}+\frac{14\!\cdots\!75}{44\!\cdots\!04}a-\frac{54\!\cdots\!17}{22\!\cdots\!52}$, $\frac{40\!\cdots\!73}{35\!\cdots\!32}a^{17}-\frac{58\!\cdots\!17}{95\!\cdots\!64}a^{16}-\frac{15\!\cdots\!99}{35\!\cdots\!32}a^{15}+\frac{52\!\cdots\!47}{21\!\cdots\!04}a^{14}+\frac{64\!\cdots\!39}{95\!\cdots\!64}a^{13}-\frac{37\!\cdots\!41}{10\!\cdots\!96}a^{12}-\frac{17\!\cdots\!33}{31\!\cdots\!88}a^{11}+\frac{17\!\cdots\!05}{95\!\cdots\!64}a^{10}+\frac{41\!\cdots\!51}{15\!\cdots\!44}a^{9}+\frac{18\!\cdots\!01}{15\!\cdots\!44}a^{8}-\frac{14\!\cdots\!63}{17\!\cdots\!44}a^{7}-\frac{12\!\cdots\!07}{39\!\cdots\!36}a^{6}+\frac{74\!\cdots\!99}{55\!\cdots\!88}a^{5}+\frac{75\!\cdots\!55}{99\!\cdots\!84}a^{4}-\frac{33\!\cdots\!47}{66\!\cdots\!56}a^{3}-\frac{79\!\cdots\!17}{22\!\cdots\!52}a^{2}+\frac{54\!\cdots\!39}{11\!\cdots\!76}a-\frac{19\!\cdots\!35}{11\!\cdots\!76}$, $\frac{12\!\cdots\!35}{38\!\cdots\!56}a^{17}-\frac{63\!\cdots\!73}{38\!\cdots\!56}a^{16}-\frac{15\!\cdots\!67}{12\!\cdots\!52}a^{15}+\frac{36\!\cdots\!33}{54\!\cdots\!08}a^{14}+\frac{69\!\cdots\!23}{38\!\cdots\!56}a^{13}-\frac{70\!\cdots\!63}{75\!\cdots\!56}a^{12}-\frac{54\!\cdots\!07}{38\!\cdots\!56}a^{11}+\frac{17\!\cdots\!33}{38\!\cdots\!56}a^{10}+\frac{14\!\cdots\!05}{21\!\cdots\!92}a^{9}+\frac{79\!\cdots\!71}{19\!\cdots\!28}a^{8}-\frac{13\!\cdots\!15}{68\!\cdots\!76}a^{7}-\frac{44\!\cdots\!21}{53\!\cdots\!48}a^{6}+\frac{75\!\cdots\!79}{24\!\cdots\!96}a^{5}+\frac{67\!\cdots\!17}{39\!\cdots\!36}a^{4}-\frac{20\!\cdots\!19}{26\!\cdots\!24}a^{3}-\frac{56\!\cdots\!99}{26\!\cdots\!24}a^{2}+\frac{93\!\cdots\!63}{44\!\cdots\!04}a-\frac{12\!\cdots\!71}{44\!\cdots\!04}$, $\frac{92\!\cdots\!19}{95\!\cdots\!64}a^{17}-\frac{28\!\cdots\!49}{63\!\cdots\!76}a^{16}-\frac{34\!\cdots\!49}{26\!\cdots\!24}a^{15}+\frac{36\!\cdots\!03}{23\!\cdots\!16}a^{14}-\frac{34\!\cdots\!97}{10\!\cdots\!96}a^{13}-\frac{13\!\cdots\!53}{63\!\cdots\!76}a^{12}+\frac{12\!\cdots\!57}{18\!\cdots\!72}a^{11}+\frac{79\!\cdots\!35}{63\!\cdots\!76}a^{10}-\frac{32\!\cdots\!03}{15\!\cdots\!44}a^{9}-\frac{37\!\cdots\!37}{95\!\cdots\!64}a^{8}-\frac{33\!\cdots\!91}{20\!\cdots\!84}a^{7}+\frac{77\!\cdots\!41}{79\!\cdots\!72}a^{6}+\frac{18\!\cdots\!37}{33\!\cdots\!28}a^{5}-\frac{78\!\cdots\!35}{19\!\cdots\!84}a^{4}-\frac{12\!\cdots\!63}{83\!\cdots\!32}a^{3}+\frac{12\!\cdots\!77}{13\!\cdots\!12}a^{2}-\frac{18\!\cdots\!27}{11\!\cdots\!76}a+\frac{18\!\cdots\!49}{22\!\cdots\!52}$, $\frac{22\!\cdots\!25}{76\!\cdots\!12}a^{17}+\frac{14\!\cdots\!49}{76\!\cdots\!12}a^{16}-\frac{95\!\cdots\!61}{10\!\cdots\!16}a^{15}-\frac{29\!\cdots\!87}{76\!\cdots\!12}a^{14}+\frac{89\!\cdots\!29}{76\!\cdots\!12}a^{13}+\frac{33\!\cdots\!93}{76\!\cdots\!12}a^{12}-\frac{54\!\cdots\!53}{76\!\cdots\!12}a^{11}-\frac{26\!\cdots\!69}{76\!\cdots\!12}a^{10}+\frac{56\!\cdots\!79}{38\!\cdots\!56}a^{9}+\frac{66\!\cdots\!73}{38\!\cdots\!56}a^{8}+\frac{12\!\cdots\!77}{56\!\cdots\!92}a^{7}-\frac{33\!\cdots\!63}{95\!\cdots\!64}a^{6}-\frac{48\!\cdots\!01}{49\!\cdots\!92}a^{5}+\frac{12\!\cdots\!67}{79\!\cdots\!72}a^{4}+\frac{91\!\cdots\!09}{15\!\cdots\!44}a^{3}-\frac{76\!\cdots\!13}{53\!\cdots\!48}a^{2}+\frac{40\!\cdots\!11}{12\!\cdots\!44}a-\frac{14\!\cdots\!61}{88\!\cdots\!08}$, $\frac{44\!\cdots\!37}{54\!\cdots\!08}a^{17}-\frac{11\!\cdots\!55}{54\!\cdots\!08}a^{16}-\frac{55\!\cdots\!73}{18\!\cdots\!36}a^{15}+\frac{49\!\cdots\!61}{54\!\cdots\!08}a^{14}+\frac{24\!\cdots\!57}{54\!\cdots\!08}a^{13}-\frac{24\!\cdots\!37}{18\!\cdots\!36}a^{12}-\frac{18\!\cdots\!21}{54\!\cdots\!08}a^{11}+\frac{32\!\cdots\!99}{54\!\cdots\!08}a^{10}+\frac{14\!\cdots\!69}{10\!\cdots\!52}a^{9}+\frac{37\!\cdots\!05}{16\!\cdots\!12}a^{8}-\frac{26\!\cdots\!07}{68\!\cdots\!76}a^{7}-\frac{52\!\cdots\!21}{25\!\cdots\!88}a^{6}+\frac{36\!\cdots\!25}{79\!\cdots\!12}a^{5}+\frac{21\!\cdots\!87}{57\!\cdots\!48}a^{4}+\frac{69\!\cdots\!67}{10\!\cdots\!76}a^{3}-\frac{11\!\cdots\!57}{38\!\cdots\!32}a^{2}+\frac{28\!\cdots\!61}{63\!\cdots\!72}a-\frac{21\!\cdots\!77}{63\!\cdots\!72}$, $\frac{58\!\cdots\!51}{54\!\cdots\!08}a^{17}-\frac{15\!\cdots\!41}{18\!\cdots\!36}a^{16}-\frac{19\!\cdots\!25}{54\!\cdots\!08}a^{15}+\frac{21\!\cdots\!15}{78\!\cdots\!44}a^{14}+\frac{97\!\cdots\!85}{20\!\cdots\!04}a^{13}-\frac{18\!\cdots\!55}{54\!\cdots\!08}a^{12}-\frac{19\!\cdots\!07}{54\!\cdots\!08}a^{11}+\frac{95\!\cdots\!99}{60\!\cdots\!12}a^{10}+\frac{48\!\cdots\!09}{27\!\cdots\!04}a^{9}+\frac{53\!\cdots\!29}{27\!\cdots\!04}a^{8}-\frac{19\!\cdots\!65}{32\!\cdots\!56}a^{7}-\frac{13\!\cdots\!51}{68\!\cdots\!76}a^{6}+\frac{63\!\cdots\!91}{71\!\cdots\!56}a^{5}+\frac{81\!\cdots\!87}{19\!\cdots\!16}a^{4}-\frac{25\!\cdots\!09}{11\!\cdots\!96}a^{3}-\frac{14\!\cdots\!65}{38\!\cdots\!32}a^{2}+\frac{32\!\cdots\!67}{63\!\cdots\!72}a-\frac{45\!\cdots\!25}{63\!\cdots\!72}$, $\frac{54\!\cdots\!07}{25\!\cdots\!04}a^{17}-\frac{12\!\cdots\!25}{12\!\cdots\!52}a^{16}-\frac{14\!\cdots\!49}{17\!\cdots\!32}a^{15}+\frac{84\!\cdots\!11}{21\!\cdots\!92}a^{14}+\frac{31\!\cdots\!75}{25\!\cdots\!04}a^{13}-\frac{71\!\cdots\!79}{12\!\cdots\!52}a^{12}-\frac{14\!\cdots\!57}{15\!\cdots\!12}a^{11}+\frac{16\!\cdots\!31}{63\!\cdots\!76}a^{10}+\frac{19\!\cdots\!47}{42\!\cdots\!84}a^{9}+\frac{19\!\cdots\!23}{35\!\cdots\!32}a^{8}-\frac{42\!\cdots\!79}{31\!\cdots\!88}a^{7}-\frac{50\!\cdots\!19}{79\!\cdots\!72}a^{6}+\frac{26\!\cdots\!23}{16\!\cdots\!64}a^{5}+\frac{10\!\cdots\!95}{88\!\cdots\!08}a^{4}+\frac{10\!\cdots\!65}{53\!\cdots\!48}a^{3}-\frac{34\!\cdots\!97}{44\!\cdots\!04}a^{2}+\frac{25\!\cdots\!61}{18\!\cdots\!92}a-\frac{24\!\cdots\!83}{22\!\cdots\!52}$, $\frac{18\!\cdots\!41}{76\!\cdots\!12}a^{17}+\frac{41\!\cdots\!45}{76\!\cdots\!12}a^{16}-\frac{10\!\cdots\!45}{10\!\cdots\!16}a^{15}+\frac{84\!\cdots\!13}{76\!\cdots\!12}a^{14}+\frac{10\!\cdots\!37}{76\!\cdots\!12}a^{13}+\frac{10\!\cdots\!49}{76\!\cdots\!12}a^{12}-\frac{79\!\cdots\!57}{76\!\cdots\!12}a^{11}-\frac{15\!\cdots\!85}{76\!\cdots\!12}a^{10}+\frac{13\!\cdots\!19}{38\!\cdots\!56}a^{9}+\frac{83\!\cdots\!73}{38\!\cdots\!56}a^{8}-\frac{24\!\cdots\!83}{95\!\cdots\!64}a^{7}-\frac{66\!\cdots\!19}{95\!\cdots\!64}a^{6}-\frac{96\!\cdots\!97}{66\!\cdots\!56}a^{5}+\frac{19\!\cdots\!87}{79\!\cdots\!72}a^{4}-\frac{20\!\cdots\!75}{15\!\cdots\!44}a^{3}-\frac{10\!\cdots\!37}{53\!\cdots\!48}a^{2}+\frac{64\!\cdots\!75}{12\!\cdots\!44}a-\frac{24\!\cdots\!01}{88\!\cdots\!08}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 7037583519854197000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot 7037583519854197000 \cdot 18}{2\cdot\sqrt{242459919475028479855663400956723947300369356292096}}\cr\approx \mathstrut & 16.0178889061164 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^18 - 6*x^17 - 375*x^16 + 2368*x^15 + 55431*x^14 - 341010*x^13 - 4247625*x^12 + 18225072*x^11 + 196851960*x^10 - 28919560*x^9 - 6546800460*x^8 - 21584096256*x^7 + 115261502192*x^6 + 462960621216*x^5 - 651006518256*x^4 - 487285125888*x^3 + 7129891302912*x^2 - 13932663541632*x + 6790409053632)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^18 - 6*x^17 - 375*x^16 + 2368*x^15 + 55431*x^14 - 341010*x^13 - 4247625*x^12 + 18225072*x^11 + 196851960*x^10 - 28919560*x^9 - 6546800460*x^8 - 21584096256*x^7 + 115261502192*x^6 + 462960621216*x^5 - 651006518256*x^4 - 487285125888*x^3 + 7129891302912*x^2 - 13932663541632*x + 6790409053632, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^18 - 6*x^17 - 375*x^16 + 2368*x^15 + 55431*x^14 - 341010*x^13 - 4247625*x^12 + 18225072*x^11 + 196851960*x^10 - 28919560*x^9 - 6546800460*x^8 - 21584096256*x^7 + 115261502192*x^6 + 462960621216*x^5 - 651006518256*x^4 - 487285125888*x^3 + 7129891302912*x^2 - 13932663541632*x + 6790409053632);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^18 - 6*x^17 - 375*x^16 + 2368*x^15 + 55431*x^14 - 341010*x^13 - 4247625*x^12 + 18225072*x^11 + 196851960*x^10 - 28919560*x^9 - 6546800460*x^8 - 21584096256*x^7 + 115261502192*x^6 + 462960621216*x^5 - 651006518256*x^4 - 487285125888*x^3 + 7129891302912*x^2 - 13932663541632*x + 6790409053632);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_3^2:D_6$ (as 18T52):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 108
The 20 conjugacy class representatives for $C_3^2:D_6$
Character table for $C_3^2:D_6$

Intermediate fields

\(\Q(\sqrt{34}) \), 3.1.972.2, 6.2.594140645376.1, 9.3.9023659939580352192.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 18 siblings: data not computed
Degree 36 siblings: data not computed
Minimal sibling: 18.6.2669978537124037139090333900186451027656102117376.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }^{2}{,}\,{\href{/padicField/5.3.0.1}{3} }^{2}$ R ${\href{/padicField/11.6.0.1}{6} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{3}$ R ${\href{/padicField/19.6.0.1}{6} }^{3}$ ${\href{/padicField/23.6.0.1}{6} }^{3}$ ${\href{/padicField/29.6.0.1}{6} }^{2}{,}\,{\href{/padicField/29.3.0.1}{3} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }^{3}$ ${\href{/padicField/37.3.0.1}{3} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ ${\href{/padicField/41.2.0.1}{2} }^{9}$ ${\href{/padicField/43.6.0.1}{6} }^{3}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ ${\href{/padicField/53.6.0.1}{6} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.6.11.1$x^{6} + 4 x^{3} + 2$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.6.11.1$x^{6} + 4 x^{3} + 2$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
2.6.11.1$x^{6} + 4 x^{3} + 2$$6$$1$$11$$D_{6}$$[3]_{3}^{2}$
\(3\) Copy content Toggle raw display 3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
3.3.5.2$x^{3} + 18 x + 3$$3$$1$$5$$S_3$$[5/2]_{2}$
\(7\) Copy content Toggle raw display 7.6.4.2$x^{6} - 42 x^{3} + 147$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.1$x^{6} + 14 x^{3} - 245$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
\(17\) Copy content Toggle raw display 17.6.3.1$x^{6} + 459 x^{5} + 70280 x^{4} + 3597823 x^{3} + 1271380 x^{2} + 4696159 x + 50437479$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
17.12.10.2$x^{12} - 3060 x^{6} - 197676$$6$$2$$10$$C_6\times S_3$$[\ ]_{6}^{6}$