Normalized defining polynomial
\( x^{18} - 6 x^{17} - 6 x^{16} + 147 x^{15} - 219 x^{14} - 1230 x^{13} + 2972 x^{12} + 5445 x^{11} - 19848 x^{10} - 8259 x^{9} + 79359 x^{8} - 46203 x^{7} - 137394 x^{6} + 175326 x^{5} + 68934 x^{4} - 202983 x^{3} + 37485 x^{2} + 96579 x - 48539 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2414477422103715329143346811072=2^{6}\cdot 3^{18}\cdot 7^{15}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{26} a^{16} + \frac{5}{26} a^{15} - \frac{5}{26} a^{14} - \frac{9}{26} a^{13} + \frac{2}{13} a^{12} - \frac{11}{26} a^{11} + \frac{9}{26} a^{10} + \frac{1}{13} a^{9} + \frac{7}{26} a^{8} + \frac{2}{13} a^{7} + \frac{11}{26} a^{6} - \frac{5}{26} a^{5} + \frac{2}{13} a^{4} + \frac{5}{13} a^{3} - \frac{7}{26} a^{2} - \frac{7}{26} a - \frac{5}{26}$, $\frac{1}{3712086711130747643481278664513647841326} a^{17} + \frac{61143475886316037169556773204211032713}{3712086711130747643481278664513647841326} a^{16} - \frac{761378304999432563640291881818320212723}{3712086711130747643481278664513647841326} a^{15} + \frac{951721555281947884292557889793409952307}{3712086711130747643481278664513647841326} a^{14} + \frac{862520522260627282920667410625444709964}{1856043355565373821740639332256823920663} a^{13} + \frac{1086620790402319723297527477558516481141}{3712086711130747643481278664513647841326} a^{12} + \frac{1516437810598027568749315977717832302395}{3712086711130747643481278664513647841326} a^{11} + \frac{190227373262536578478196731925571811504}{1856043355565373821740639332256823920663} a^{10} - \frac{1691476227024181566280563846968491879045}{3712086711130747643481278664513647841326} a^{9} + \frac{624948726871265358499969000434648887481}{1856043355565373821740639332256823920663} a^{8} + \frac{227676109944207703230212094088107289013}{3712086711130747643481278664513647841326} a^{7} - \frac{531558024910737686871903153989953467515}{3712086711130747643481278664513647841326} a^{6} + \frac{170671937705484777326664090033487596721}{1856043355565373821740639332256823920663} a^{5} - \frac{32107562076124069363293622611438375470}{1856043355565373821740639332256823920663} a^{4} - \frac{979269702720576856035171083754555432751}{3712086711130747643481278664513647841326} a^{3} + \frac{801082580229823339796108157733814953827}{3712086711130747643481278664513647841326} a^{2} - \frac{907045609237150815898228129375713405841}{3712086711130747643481278664513647841326} a - \frac{159651226453855182571527465385331672314}{1856043355565373821740639332256823920663}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 307000319.813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n766 are not computed |
| Character table for t18n766 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.12.0.1 | $x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.12.11.2 | $x^{12} + 56$ | $12$ | $1$ | $11$ | $D_4 \times C_3$ | $[\ ]_{12}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |