Normalized defining polynomial
\( x^{18} - 36 x^{15} - 585 x^{14} + 1728 x^{13} - 1650 x^{12} - 5670 x^{11} + 49131 x^{10} - 75340 x^{9} + 229878 x^{8} - 169380 x^{7} + 448401 x^{6} - 212940 x^{5} + 549954 x^{4} - 288762 x^{3} + 334836 x^{2} - 186912 x - 10622 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2310941987733575020334469218500608=2^{16}\cdot 3^{37}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{92} a^{14} + \frac{5}{46} a^{13} - \frac{5}{46} a^{12} - \frac{3}{46} a^{11} + \frac{9}{46} a^{10} - \frac{11}{46} a^{9} + \frac{9}{23} a^{8} - \frac{2}{23} a^{7} - \frac{3}{92} a^{6} + \frac{10}{23} a^{5} - \frac{9}{23} a^{4} - \frac{17}{46} a^{3} + \frac{9}{23} a^{2} - \frac{3}{23} a - \frac{5}{46}$, $\frac{1}{184} a^{15} - \frac{1}{184} a^{14} + \frac{9}{92} a^{13} + \frac{3}{46} a^{12} + \frac{19}{92} a^{11} - \frac{9}{46} a^{10} - \frac{11}{46} a^{9} - \frac{9}{46} a^{8} + \frac{39}{184} a^{7} - \frac{19}{184} a^{6} + \frac{19}{46} a^{5} - \frac{3}{92} a^{4} - \frac{25}{92} a^{3} + \frac{13}{46} a^{2} - \frac{31}{92} a + \frac{9}{92}$, $\frac{1}{1288} a^{16} + \frac{1}{644} a^{15} - \frac{5}{1288} a^{14} - \frac{67}{644} a^{13} - \frac{47}{644} a^{12} + \frac{99}{644} a^{11} + \frac{5}{161} a^{10} + \frac{34}{161} a^{9} + \frac{45}{184} a^{8} + \frac{313}{644} a^{7} + \frac{263}{1288} a^{6} + \frac{263}{644} a^{5} - \frac{113}{322} a^{4} + \frac{107}{644} a^{3} - \frac{129}{644} a^{2} - \frac{60}{161} a + \frac{127}{644}$, $\frac{1}{6659852162446263770301665957338808153741974936} a^{17} - \frac{204834784033139347894413979652592901268173}{951407451778037681471666565334115450534567848} a^{16} - \frac{7382082815145228520465745195803273064187313}{3329926081223131885150832978669404076870987468} a^{15} - \frac{751628039754744533202021376054885370364549}{1664963040611565942575416489334702038435493734} a^{14} - \frac{403725666724818656470948100881771721194541819}{3329926081223131885150832978669404076870987468} a^{13} - \frac{114475215907850624394356610531114872366351541}{1664963040611565942575416489334702038435493734} a^{12} - \frac{382781767612614234559971476595663289939892161}{1664963040611565942575416489334702038435493734} a^{11} - \frac{371521525556223403107818256252259455598244253}{1664963040611565942575416489334702038435493734} a^{10} - \frac{1363511045755015651875572025931915917274567221}{6659852162446263770301665957338808153741974936} a^{9} + \frac{748190372012515028669820986515748934101874315}{6659852162446263770301665957338808153741974936} a^{8} - \frac{120689346739180271543912879302367806635979281}{1664963040611565942575416489334702038435493734} a^{7} + \frac{195152796879315225862257933652348546408616647}{475703725889018840735833282667057725267283924} a^{6} - \frac{1434436894723626936713969578612724287675481595}{3329926081223131885150832978669404076870987468} a^{5} + \frac{311083975410226770970625643491765591080606477}{1664963040611565942575416489334702038435493734} a^{4} - \frac{26472995089376916409871009414177153210668793}{475703725889018840735833282667057725267283924} a^{3} - \frac{718798545312492983040270779147212965492648561}{3329926081223131885150832978669404076870987468} a^{2} - \frac{141223455304263920961406110072385729030496669}{832481520305782971287708244667351019217746867} a - \frac{52149965496029725429059076934961509997810}{17712372772463467474206558397177681259952061}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27167646192.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_4$ (as 18T66):
| A solvable group of order 144 |
| The 18 conjugacy class representatives for $C_2\times C_3:S_4$ |
| Character table for $C_2\times C_3:S_4$ |
Intermediate fields
| 3.3.22356.2, 3.3.22356.1, 3.3.22356.3, 3.3.621.1, 6.2.4627692.1, 9.9.6938632771983936.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.8.1 | $x^{12} - 6 x^{9} + 12 x^{6} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| 3 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |