Normalized defining polynomial
\( x^{18} - 6 x^{17} + 5 x^{16} + 68 x^{15} - 308 x^{14} + 426 x^{13} + 318 x^{12} - 1905 x^{11} + 2547 x^{10} - 5955 x^{9} + 25356 x^{8} - 55783 x^{7} + 46314 x^{6} + 41206 x^{5} - 117880 x^{4} + 80053 x^{3} + 5918 x^{2} - 26871 x + 7883 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2172566134897789192777842401601=3^{6}\cdot 1129^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{2}{11} a^{11} + \frac{3}{11} a^{10} - \frac{1}{11} a^{9} + \frac{3}{11} a^{8} + \frac{5}{11} a^{7} - \frac{5}{11} a^{6} + \frac{1}{11} a^{5} - \frac{3}{11} a^{4} - \frac{3}{11} a^{3} + \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{13} - \frac{1}{11} a^{11} + \frac{4}{11} a^{10} + \frac{5}{11} a^{9} - \frac{1}{11} a^{8} - \frac{4}{11} a^{7} - \frac{5}{11} a^{5} + \frac{3}{11} a^{4} - \frac{4}{11} a^{3} + \frac{3}{11}$, $\frac{1}{11} a^{14} - \frac{5}{11} a^{11} - \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{1}{11} a^{8} + \frac{5}{11} a^{7} + \frac{1}{11} a^{6} + \frac{4}{11} a^{5} + \frac{4}{11} a^{4} - \frac{3}{11} a^{3} + \frac{1}{11} a^{2} + \frac{5}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{15} - \frac{4}{11} a^{11} + \frac{2}{11} a^{10} + \frac{5}{11} a^{9} - \frac{2}{11} a^{8} + \frac{4}{11} a^{7} + \frac{1}{11} a^{6} - \frac{2}{11} a^{5} + \frac{4}{11} a^{4} - \frac{3}{11} a^{3} - \frac{1}{11} a^{2} + \frac{3}{11} a - \frac{2}{11}$, $\frac{1}{3031831} a^{16} + \frac{78224}{3031831} a^{15} + \frac{58680}{3031831} a^{14} - \frac{9950}{275621} a^{13} + \frac{121488}{3031831} a^{12} + \frac{36532}{97801} a^{11} - \frac{720516}{3031831} a^{10} + \frac{608557}{3031831} a^{9} + \frac{196696}{3031831} a^{8} + \frac{53928}{3031831} a^{7} + \frac{41295}{275621} a^{6} - \frac{1406683}{3031831} a^{5} + \frac{109976}{3031831} a^{4} + \frac{708799}{3031831} a^{3} - \frac{21532}{178343} a^{2} + \frac{791250}{3031831} a - \frac{874571}{3031831}$, $\frac{1}{855721450920351145103631184549} a^{17} + \frac{82470982885304275290692}{855721450920351145103631184549} a^{16} - \frac{21101472867207931870934929846}{855721450920351145103631184549} a^{15} + \frac{15771475461402007613022458133}{855721450920351145103631184549} a^{14} - \frac{28918188029887269883460209384}{855721450920351145103631184549} a^{13} - \frac{1713385251533646771814001308}{50336555936491243829625363797} a^{12} - \frac{235862564400534768325504406287}{855721450920351145103631184549} a^{11} + \frac{403772817875814057082365313868}{855721450920351145103631184549} a^{10} + \frac{223207063213070329306139443057}{855721450920351145103631184549} a^{9} - \frac{67256137046411465788038705516}{855721450920351145103631184549} a^{8} + \frac{357313037824183619396611788144}{855721450920351145103631184549} a^{7} + \frac{38486779011451607752199224417}{855721450920351145103631184549} a^{6} - \frac{338208011620976196780442934285}{855721450920351145103631184549} a^{5} - \frac{16261310956299732662372267967}{855721450920351145103631184549} a^{4} + \frac{29384496754695062760590177266}{77792859174577376827602834959} a^{3} + \frac{133888454077374628646411273579}{855721450920351145103631184549} a^{2} - \frac{53065895457581070979071865205}{855721450920351145103631184549} a + \frac{87245113170487772904280644772}{855721450920351145103631184549}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42390273.4365 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_9$ (as 18T39):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_2^2:D_9$ |
| Character table for $C_2^2:D_9$ |
Intermediate fields
| 3.3.1129.1, 6.2.12951627201.5, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1129 | Data not computed | ||||||