Normalized defining polynomial
\( x^{18} - 32 x^{15} + 27 x^{14} + 162 x^{13} + 39 x^{12} - 1656 x^{11} + 1293 x^{10} + 5640 x^{9} - 6792 x^{8} - 11010 x^{7} + 20030 x^{6} + 10854 x^{5} - 30129 x^{4} + 1826 x^{3} + 7347 x^{2} - 5988 x + 5569 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(214228033597440000000000000=2^{24}\cdot 3^{21}\cdot 5^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{41} a^{16} + \frac{14}{41} a^{15} + \frac{13}{41} a^{14} + \frac{7}{41} a^{13} + \frac{1}{41} a^{12} + \frac{2}{41} a^{11} + \frac{7}{41} a^{10} + \frac{3}{41} a^{9} + \frac{13}{41} a^{8} - \frac{16}{41} a^{7} - \frac{6}{41} a^{6} - \frac{7}{41} a^{5} - \frac{3}{41} a^{4} - \frac{2}{41} a^{3} - \frac{6}{41} a^{2} + \frac{17}{41} a - \frac{9}{41}$, $\frac{1}{136930807300662631042530361511740224793} a^{17} + \frac{1400078036312575150026303133940912568}{136930807300662631042530361511740224793} a^{16} - \frac{7386418831475919281741811599635537621}{136930807300662631042530361511740224793} a^{15} + \frac{588889392489152827576586189656434564}{3339775787821039781525130768579029873} a^{14} + \frac{6428162490606010237275422621604292996}{136930807300662631042530361511740224793} a^{13} - \frac{30008058855659424054859501369577943006}{136930807300662631042530361511740224793} a^{12} - \frac{43217939853000322534671268810789154955}{136930807300662631042530361511740224793} a^{11} - \frac{27809879617675192574891402252514216810}{136930807300662631042530361511740224793} a^{10} - \frac{25283571342777010695590076450781057835}{136930807300662631042530361511740224793} a^{9} - \frac{66184446815408773986428241976219858992}{136930807300662631042530361511740224793} a^{8} + \frac{5989660098694243729731024724524056124}{136930807300662631042530361511740224793} a^{7} - \frac{572584980657309733174437682253458397}{136930807300662631042530361511740224793} a^{6} + \frac{35278646387873681914888555116668347041}{136930807300662631042530361511740224793} a^{5} - \frac{66821622004834126358944033007553182742}{136930807300662631042530361511740224793} a^{4} - \frac{28462516821108170383469651597647566387}{136930807300662631042530361511740224793} a^{3} + \frac{41959819169546056411391534575265928862}{136930807300662631042530361511740224793} a^{2} - \frac{31288739176759727226428181560046466751}{136930807300662631042530361511740224793} a - \frac{38104706603446655418064121621307703054}{136930807300662631042530361511740224793}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 649167.1234615253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3^2:S_3$ (as 18T52):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times C_3^2:S_3$ |
| Character table for $C_2\times C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{15}) \), 3.1.108.1, 6.2.69984000.1, 9.3.787320000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.12.10.2 | $x^{12} + 15 x^{6} + 100$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |