Normalized defining polynomial
\( x^{18} - 3 x^{17} - 15 x^{16} + 42 x^{15} + 33 x^{14} - 48 x^{13} - 199 x^{12} + 114 x^{11} + 93 x^{10} + 139 x^{9} + 186 x^{8} + 456 x^{7} - 1592 x^{6} - 768 x^{5} + 1056 x^{4} + 2688 x^{3} - 1920 x^{2} - 768 x + 512 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21000303933014149645412422233=3^{18}\cdot 7^{14}\cdot 29^{4}\cdot 113\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{56} a^{12} + \frac{1}{56} a^{11} + \frac{1}{56} a^{10} + \frac{5}{28} a^{9} + \frac{5}{56} a^{8} - \frac{1}{2} a^{7} - \frac{27}{56} a^{6} + \frac{1}{4} a^{5} - \frac{15}{56} a^{4} - \frac{25}{56} a^{3} + \frac{1}{28} a^{2} + \frac{1}{14} a + \frac{1}{7}$, $\frac{1}{112} a^{13} - \frac{1}{112} a^{12} - \frac{1}{112} a^{11} + \frac{1}{14} a^{10} - \frac{15}{112} a^{9} + \frac{9}{56} a^{8} + \frac{29}{112} a^{7} + \frac{3}{28} a^{6} - \frac{43}{112} a^{5} + \frac{5}{112} a^{4} + \frac{13}{28} a^{3} - \frac{1}{2} a - \frac{1}{7}$, $\frac{1}{224} a^{14} - \frac{1}{224} a^{13} - \frac{1}{224} a^{12} + \frac{1}{28} a^{11} - \frac{15}{224} a^{10} - \frac{47}{112} a^{9} - \frac{83}{224} a^{8} - \frac{25}{56} a^{7} + \frac{69}{224} a^{6} + \frac{5}{224} a^{5} + \frac{13}{56} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{14} a$, $\frac{1}{448} a^{15} - \frac{1}{448} a^{14} - \frac{1}{448} a^{13} - \frac{23}{448} a^{11} - \frac{51}{224} a^{10} - \frac{163}{448} a^{9} + \frac{3}{16} a^{8} - \frac{155}{448} a^{7} - \frac{3}{448} a^{6} + \frac{41}{112} a^{5} + \frac{1}{56} a^{4} + \frac{1}{14} a^{3} + \frac{3}{7} a^{2} + \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{977536} a^{16} + \frac{995}{977536} a^{15} + \frac{183}{977536} a^{14} + \frac{493}{122192} a^{13} - \frac{2731}{977536} a^{12} + \frac{25379}{488768} a^{11} + \frac{189905}{977536} a^{10} - \frac{33275}{122192} a^{9} - \frac{487007}{977536} a^{8} + \frac{326217}{977536} a^{7} + \frac{63349}{244384} a^{6} - \frac{111229}{244384} a^{5} - \frac{4365}{17456} a^{4} - \frac{21569}{61096} a^{3} - \frac{454}{7637} a^{2} - \frac{96}{7637} a - \frac{2180}{7637}$, $\frac{1}{13685504} a^{17} - \frac{1}{1955072} a^{16} - \frac{10543}{13685504} a^{15} - \frac{6795}{6842752} a^{14} + \frac{16621}{13685504} a^{13} + \frac{7293}{3421376} a^{12} + \frac{240813}{13685504} a^{11} - \frac{1667705}{6842752} a^{10} - \frac{2009687}{13685504} a^{9} - \frac{1961985}{13685504} a^{8} + \frac{189241}{6842752} a^{7} - \frac{71089}{3421376} a^{6} - \frac{280575}{855344} a^{5} + \frac{204805}{427672} a^{4} + \frac{8738}{53459} a^{3} + \frac{11388}{53459} a^{2} - \frac{2948}{7637} a + \frac{16454}{53459}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33090400.5204 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 144 conjugacy class representatives for t18n766 are not computed |
| Character table for t18n766 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.9.13632439166829.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113 | Data not computed | ||||||