Normalized defining polynomial
\( x^{18} - 7 x^{17} + 18 x^{16} - 17 x^{15} - 11 x^{14} + 44 x^{13} - 58 x^{12} + 103 x^{11} - 267 x^{10} + 521 x^{9} - 674 x^{8} + 554 x^{7} - 214 x^{6} - 93 x^{5} + 194 x^{4} - 135 x^{3} + 52 x^{2} - 11 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2094660489407173427089=7^{12}\cdot 73^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{329} a^{15} + \frac{150}{329} a^{14} + \frac{55}{329} a^{13} - \frac{1}{47} a^{12} + \frac{20}{47} a^{11} + \frac{17}{329} a^{10} + \frac{20}{47} a^{9} - \frac{86}{329} a^{8} - \frac{143}{329} a^{7} + \frac{57}{329} a^{6} + \frac{115}{329} a^{5} + \frac{104}{329} a^{4} - \frac{8}{329} a^{3} - \frac{43}{329} a^{2} + \frac{164}{329} a + \frac{1}{329}$, $\frac{1}{987} a^{16} - \frac{73}{987} a^{14} + \frac{99}{329} a^{13} + \frac{29}{141} a^{12} + \frac{73}{987} a^{11} - \frac{107}{987} a^{10} - \frac{359}{987} a^{9} + \frac{85}{329} a^{8} + \frac{451}{987} a^{7} + \frac{17}{141} a^{6} + \frac{97}{329} a^{5} - \frac{158}{329} a^{4} - \frac{53}{329} a^{3} - \frac{295}{987} a^{2} - \frac{253}{987} a - \frac{479}{987}$, $\frac{1}{2961} a^{17} + \frac{1}{2961} a^{16} - \frac{1}{2961} a^{15} + \frac{1154}{2961} a^{14} - \frac{1462}{2961} a^{13} + \frac{253}{987} a^{12} + \frac{1163}{2961} a^{11} + \frac{758}{2961} a^{10} - \frac{881}{2961} a^{9} - \frac{551}{2961} a^{8} - \frac{281}{987} a^{7} - \frac{421}{2961} a^{6} + \frac{132}{329} a^{5} + \frac{311}{987} a^{4} + \frac{944}{2961} a^{3} - \frac{683}{2961} a^{2} - \frac{256}{987} a - \frac{1394}{2961}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4120.17595553 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times A_5$ (as 18T90):
| A non-solvable group of order 180 |
| The 15 conjugacy class representatives for $C_3\times A_5$ |
| Character table for $C_3\times A_5$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.2.12794929.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $73$ | 73.6.3.2 | $x^{6} - 5329 x^{2} + 5446238$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 73.6.0.1 | $x^{6} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 73.6.3.1 | $x^{6} - 146 x^{4} + 5329 x^{2} - 76247332$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |