Normalized defining polynomial
\( x^{18} - 6 x^{17} + 2 x^{16} - 2 x^{15} + 175 x^{14} - 143 x^{13} - 558 x^{12} - 398 x^{11} + 1013 x^{10} + 2352 x^{9} + 492 x^{8} - 2052 x^{7} - 2339 x^{6} + 419 x^{5} + 1098 x^{4} - 55 x^{3} - 814 x^{2} - 340 x + 280 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2088250898977156737619455078125=5^{9}\cdot 7^{2}\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $48.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{15} + \frac{2}{25} a^{14} - \frac{2}{25} a^{12} + \frac{6}{25} a^{11} - \frac{9}{25} a^{10} - \frac{2}{5} a^{9} - \frac{6}{25} a^{7} - \frac{6}{25} a^{6} + \frac{2}{25} a^{5} + \frac{6}{25} a^{4} + \frac{7}{25} a^{3} - \frac{11}{25} a^{2} - \frac{1}{5}$, $\frac{1}{11500} a^{16} - \frac{27}{5750} a^{15} + \frac{39}{5750} a^{14} + \frac{509}{5750} a^{13} - \frac{1137}{11500} a^{12} - \frac{891}{2300} a^{11} + \frac{587}{5750} a^{10} - \frac{297}{1150} a^{9} + \frac{2689}{11500} a^{8} - \frac{4}{115} a^{7} - \frac{1133}{2875} a^{6} + \frac{146}{2875} a^{5} + \frac{3241}{11500} a^{4} - \frac{693}{11500} a^{3} - \frac{497}{5750} a^{2} + \frac{829}{2300} a - \frac{117}{1150}$, $\frac{1}{295000817172832188742000} a^{17} - \frac{5769031398736929}{165359202451139119250} a^{16} + \frac{2041471471268118598913}{147500408586416094371000} a^{15} - \frac{14185255945690332309819}{147500408586416094371000} a^{14} - \frac{24224384309135559451013}{295000817172832188742000} a^{13} + \frac{13309771298966161894139}{295000817172832188742000} a^{12} - \frac{35810163898305560266449}{73750204293208047185500} a^{11} - \frac{32463216808819804102059}{147500408586416094371000} a^{10} - \frac{4738084290749814381471}{295000817172832188742000} a^{9} - \frac{26180186275343768620249}{147500408586416094371000} a^{8} - \frac{6088114720939590566147}{18437551073302011796375} a^{7} - \frac{24184900163895727466153}{73750204293208047185500} a^{6} - \frac{105428379286516650405307}{295000817172832188742000} a^{5} - \frac{1189889509645354965627}{59000163434566437748400} a^{4} + \frac{7983903302474424758459}{36875102146604023592750} a^{3} + \frac{25443417742518541159833}{295000817172832188742000} a^{2} - \frac{1511826272715595766257}{3687510214660402359275} a - \frac{3471038474591784130333}{14750040858641609437100}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 415565242.553 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 84 conjugacy class representatives for t18n775 are not computed |
| Character table for t18n775 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $139$ | 139.6.4.1 | $x^{6} + 695 x^{3} + 154568$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 139.12.0.1 | $x^{12} - x + 22$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $197$ | $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{197}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.2.1.2 | $x^{2} + 394$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 197.8.4.1 | $x^{8} + 1397124 x^{4} - 7645373 x^{2} + 487988867844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |