Normalized defining polynomial
\( x^{18} - 6 x^{17} - 6 x^{16} + 82 x^{15} - 210 x^{14} - 60 x^{13} + 1534 x^{12} - 3024 x^{11} - 1260 x^{10} + 13472 x^{9} - 15720 x^{8} - 17160 x^{7} + 64672 x^{6} - 21216 x^{5} - 118608 x^{4} + 73888 x^{3} + 112320 x^{2} - 42336 x - 28832 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(20714324019129661632580349263872=2^{16}\cdot 3^{24}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{12} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} + \frac{1}{12} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{48} a^{13} + \frac{1}{24} a^{10} - \frac{1}{8} a^{9} - \frac{5}{24} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a$, $\frac{1}{48} a^{14} + \frac{1}{24} a^{11} - \frac{1}{8} a^{10} - \frac{5}{24} a^{8} - \frac{1}{4} a^{7} + \frac{1}{6} a^{5} - \frac{1}{6} a^{2}$, $\frac{1}{288} a^{15} + \frac{1}{48} a^{11} - \frac{1}{12} a^{10} + \frac{5}{144} a^{9} + \frac{1}{6} a^{7} + \frac{7}{72} a^{6} + \frac{1}{3} a^{4} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{5}{18}$, $\frac{1}{288} a^{16} - \frac{1}{48} a^{12} + \frac{1}{24} a^{11} + \frac{5}{144} a^{10} - \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{11}{72} a^{7} - \frac{1}{12} a^{6} - \frac{5}{12} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{318378958051315005963491320512} a^{17} - \frac{204994155006224404324306879}{159189479025657502981745660256} a^{16} + \frac{1754625285879284667791546}{4974671219551796968179551883} a^{15} - \frac{15618925565567942690517259}{1658223739850598989393183961} a^{14} - \frac{242953468948274806573541963}{53063159675219167660581886752} a^{13} - \frac{31396085586596250815136123}{2210964986467465319190911948} a^{12} + \frac{5334060977690116456581189917}{159189479025657502981745660256} a^{11} + \frac{8782069435056402668832357985}{79594739512828751490872830128} a^{10} + \frac{2072702474628859071725754913}{39797369756414375745436415064} a^{9} - \frac{17285851745605897845685630151}{79594739512828751490872830128} a^{8} + \frac{3343171547742358528900326629}{39797369756414375745436415064} a^{7} + \frac{7069880661706194652229586061}{39797369756414375745436415064} a^{6} + \frac{946190314483044606814249101}{4421929972934930638381823896} a^{5} - \frac{3733544913562040025419459}{552741246616866329797727987} a^{4} - \frac{507047916724985988007066721}{1658223739850598989393183961} a^{3} - \frac{1322629043951660702733552797}{19898684878207187872718207532} a^{2} - \frac{4556199927031301136825400159}{9949342439103593936359103766} a + \frac{2354158038222993147997832611}{9949342439103593936359103766}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3960572801.64 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 74 conjugacy class representatives for t18n781 are not computed |
| Character table for t18n781 is not computed |
Intermediate fields
| 3.3.564.1, 9.9.165968803220544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| $3$ | 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.6.9.16 | $x^{6} + 3 x^{4} + 6 x^{3} + 3$ | $6$ | $1$ | $9$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| 47 | Data not computed | ||||||