Normalized defining polynomial
\( x^{18} - 2 x^{17} - 3 x^{16} - 10 x^{15} + 27 x^{14} + 83 x^{13} + 4 x^{12} - 280 x^{11} - 369 x^{10} + 19 x^{9} + 1359 x^{8} + 637 x^{7} - 1501 x^{6} - 659 x^{5} + 897 x^{4} + 188 x^{3} - 270 x^{2} + 47 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19831037771561498863462656=2^{8}\cdot 3^{14}\cdot 503^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 503$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{4}{11} a^{13} + \frac{3}{11} a^{12} - \frac{3}{11} a^{11} + \frac{2}{11} a^{10} - \frac{1}{11} a^{9} + \frac{5}{11} a^{8} + \frac{1}{11} a^{7} + \frac{3}{11} a^{5} + \frac{2}{11} a^{4} - \frac{5}{11} a^{3} + \frac{5}{11} a^{2} - \frac{4}{11} a + \frac{2}{11}$, $\frac{1}{55} a^{15} + \frac{2}{55} a^{14} + \frac{1}{55} a^{13} + \frac{3}{11} a^{12} + \frac{6}{55} a^{11} + \frac{1}{5} a^{10} - \frac{1}{55} a^{9} - \frac{24}{55} a^{8} - \frac{27}{55} a^{7} + \frac{3}{55} a^{6} - \frac{2}{55} a^{5} - \frac{26}{55} a^{4} - \frac{5}{11} a^{3} - \frac{18}{55} a^{2} + \frac{1}{5} a - \frac{21}{55}$, $\frac{1}{9845} a^{16} + \frac{51}{9845} a^{15} - \frac{16}{9845} a^{14} + \frac{2394}{9845} a^{13} - \frac{69}{895} a^{12} - \frac{783}{1969} a^{11} - \frac{207}{895} a^{10} - \frac{2818}{9845} a^{9} - \frac{18}{9845} a^{8} + \frac{208}{1969} a^{7} + \frac{381}{1969} a^{6} + \frac{4206}{9845} a^{5} + \frac{131}{895} a^{4} + \frac{102}{9845} a^{3} + \frac{3339}{9845} a^{2} - \frac{2322}{9845} a + \frac{2096}{9845}$, $\frac{1}{704317905495179195} a^{17} - \frac{31298490284614}{704317905495179195} a^{16} + \frac{82596573846669}{64028900499561745} a^{15} + \frac{31243048374541279}{704317905495179195} a^{14} - \frac{225349459528699744}{704317905495179195} a^{13} + \frac{63255098544682117}{140863581099035839} a^{12} - \frac{116728651561666527}{704317905495179195} a^{11} + \frac{54725511478815742}{704317905495179195} a^{10} + \frac{114913848348224872}{704317905495179195} a^{9} + \frac{64512996104104347}{140863581099035839} a^{8} - \frac{5153569931960679}{140863581099035839} a^{7} + \frac{4116889234124421}{64028900499561745} a^{6} - \frac{299192518412412784}{704317905495179195} a^{5} + \frac{64575664400716552}{704317905495179195} a^{4} + \frac{2518973460205874}{5820809136323795} a^{3} - \frac{245315834496764052}{704317905495179195} a^{2} + \frac{53138678566359676}{704317905495179195} a - \frac{31442530569350833}{140863581099035839}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 665732.430448 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_3\times A_4):S_3$ (as 18T108):
| A solvable group of order 216 |
| The 19 conjugacy class representatives for $(C_3\times A_4):S_3$ |
| Character table for $(C_3\times A_4):S_3$ |
Intermediate fields
| 3.3.1509.1, 6.2.2277081.1, 9.9.4453205336784.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.8.2 | $x^{12} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.14.15 | $x^{12} + 9 x^{11} - 6 x^{10} + 6 x^{9} - 3 x^{8} + 9 x^{7} + 6 x^{6} - 9 x^{5} - 9 x^{4} - 9 x^{3} - 9 x^{2} + 9$ | $6$ | $2$ | $14$ | $C_6\times S_3$ | $[3/2]_{2}^{6}$ | |
| 503 | Data not computed | ||||||