Normalized defining polynomial
\( x^{18} - 12 x^{16} - 6 x^{15} - 9 x^{14} - 120 x^{13} - 222 x^{12} - 102 x^{11} + 339 x^{10} + 28 x^{9} - 996 x^{8} - 510 x^{7} + 977 x^{6} + 2316 x^{5} + 1770 x^{4} - 502 x^{3} - 1476 x^{2} - 744 x - 184 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(194518242170312579290364903424=2^{28}\cdot 3^{24}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{92} a^{15} + \frac{11}{92} a^{13} + \frac{7}{46} a^{11} - \frac{2}{23} a^{10} + \frac{2}{23} a^{9} + \frac{7}{23} a^{8} + \frac{15}{92} a^{7} + \frac{15}{46} a^{6} - \frac{1}{4} a^{5} + \frac{10}{23} a^{4} + \frac{15}{46} a^{3} - \frac{15}{46} a^{2} + \frac{8}{23} a$, $\frac{1}{644} a^{16} + \frac{1}{644} a^{15} + \frac{57}{644} a^{14} - \frac{5}{92} a^{13} - \frac{8}{161} a^{12} - \frac{10}{161} a^{11} + \frac{3}{14} a^{10} - \frac{5}{322} a^{9} - \frac{3}{644} a^{8} - \frac{277}{644} a^{7} + \frac{1}{92} a^{6} - \frac{75}{644} a^{5} - \frac{11}{322} a^{4} + \frac{1}{7} a^{3} + \frac{1}{322} a^{2} - \frac{38}{161} a - \frac{1}{7}$, $\frac{1}{112118724022058178057892} a^{17} + \frac{12902027390186012815}{56059362011029089028946} a^{16} - \frac{414501016512559783649}{112118724022058178057892} a^{15} + \frac{11027142805862438184541}{112118724022058178057892} a^{14} + \frac{1288267597598330606823}{28029681005514544514473} a^{13} - \frac{296739651931625689155}{4874727131393833828604} a^{12} - \frac{1194051452284257421825}{4874727131393833828604} a^{11} - \frac{22414392763516589451121}{112118724022058178057892} a^{10} - \frac{1241900579669617789890}{28029681005514544514473} a^{9} + \frac{34819009554717472018929}{112118724022058178057892} a^{8} + \frac{23795581154913614565737}{56059362011029089028946} a^{7} - \frac{1760572198588952996642}{28029681005514544514473} a^{6} - \frac{16385410616721215381139}{112118724022058178057892} a^{5} + \frac{15962242379600022738315}{56059362011029089028946} a^{4} + \frac{1210606549037939585339}{2437363565696916914302} a^{3} - \frac{4266086580574324637953}{56059362011029089028946} a^{2} - \frac{3754352966111399194288}{28029681005514544514473} a + \frac{557783537655527508791}{1218681782848458457151}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 424310471.885 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 30 conjugacy class representatives for t18n520 |
| Character table for t18n520 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.220521111330816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.12.24.336 | $x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{6} + 4 x^{5} + 4 x^{4} - 2 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| $3$ | 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ |
| 3.9.12.17 | $x^{9} + 6 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_3^2 : S_3 $ | $[2, 2]^{6}$ | |
| 37 | Data not computed | ||||||