Normalized defining polynomial
\( x^{18} - 16 x^{15} - 92 x^{14} - 356 x^{13} - 456 x^{12} + 892 x^{11} + 5828 x^{10} + 20588 x^{9} + 41930 x^{8} + 56326 x^{7} + 64320 x^{6} + 34672 x^{5} - 7632 x^{4} + 21242 x^{3} + 19598 x^{2} - 7100 x - 278 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19404348200650937329358209024=2^{20}\cdot 37^{6}\cdot 139^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{559} a^{16} + \frac{270}{559} a^{15} + \frac{44}{559} a^{14} + \frac{5}{13} a^{13} + \frac{23}{559} a^{12} - \frac{37}{559} a^{11} - \frac{190}{559} a^{10} + \frac{76}{559} a^{9} + \frac{198}{559} a^{8} + \frac{99}{559} a^{7} - \frac{31}{559} a^{6} - \frac{85}{559} a^{5} + \frac{180}{559} a^{4} + \frac{139}{559} a^{3} - \frac{228}{559} a^{2} - \frac{210}{559} a + \frac{275}{559}$, $\frac{1}{78556717827190494722578340201244291363539} a^{17} - \frac{561675370598773746347056876261539669}{78556717827190494722578340201244291363539} a^{16} + \frac{32117894927270407995063314150934324447030}{78556717827190494722578340201244291363539} a^{15} - \frac{1243687743617597611381782184132994722656}{6042824448245422670967564630864945489503} a^{14} - \frac{7472497045304282863315590564493398403280}{78556717827190494722578340201244291363539} a^{13} - \frac{20197148094673317191170467405641537320921}{78556717827190494722578340201244291363539} a^{12} - \frac{38605866937472333906017056477825561247431}{78556717827190494722578340201244291363539} a^{11} - \frac{32364135567779011524350403820207602548261}{78556717827190494722578340201244291363539} a^{10} + \frac{26974159193800455798513840905920753862467}{78556717827190494722578340201244291363539} a^{9} + \frac{22262524358550107145481598998101833571157}{78556717827190494722578340201244291363539} a^{8} + \frac{9939117909284903906828667972554756420616}{78556717827190494722578340201244291363539} a^{7} - \frac{1833061978170077058203374801204608652034}{6042824448245422670967564630864945489503} a^{6} - \frac{1979558310635596668799160735637422955069}{6042824448245422670967564630864945489503} a^{5} + \frac{37415793521869993380206035591621355783909}{78556717827190494722578340201244291363539} a^{4} - \frac{86435108807140734882166713870551367773}{78556717827190494722578340201244291363539} a^{3} - \frac{2158055475630863807067483185916809799052}{6042824448245422670967564630864945489503} a^{2} - \frac{26311055879609164460789305025068879133198}{78556717827190494722578340201244291363539} a + \frac{31365421168386129356321530166355585038986}{78556717827190494722578340201244291363539}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38772339.8401 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 49 conjugacy class representatives for t18n483 |
| Character table for t18n483 is not computed |
Intermediate fields
| 3.3.148.1, 6.6.1692828736.2, 9.3.1802436352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 139 | Data not computed | ||||||