Normalized defining polynomial
\( x^{18} - 2 x^{17} + 5 x^{16} - 14 x^{15} + 20 x^{14} + 232 x^{13} - 808 x^{12} + 982 x^{11} - 3238 x^{10} - 4232 x^{9} + 39754 x^{8} - 38726 x^{7} - 109654 x^{6} + 174916 x^{5} + 90374 x^{4} - 250076 x^{3} + 29957 x^{2} + 121672 x - 51797 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19404348200650937329358209024=2^{20}\cdot 37^{6}\cdot 139^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{17} a^{15} - \frac{8}{17} a^{14} + \frac{1}{17} a^{13} - \frac{5}{17} a^{12} - \frac{7}{17} a^{11} - \frac{3}{17} a^{10} - \frac{2}{17} a^{9} - \frac{4}{17} a^{8} - \frac{3}{17} a^{7} - \frac{8}{17} a^{6} - \frac{3}{17} a^{5} + \frac{5}{17} a^{4} - \frac{2}{17} a^{3} + \frac{6}{17} a^{2} + \frac{3}{17} a + \frac{7}{17}$, $\frac{1}{17} a^{16} + \frac{5}{17} a^{14} + \frac{3}{17} a^{13} + \frac{4}{17} a^{12} - \frac{8}{17} a^{11} + \frac{8}{17} a^{10} - \frac{3}{17} a^{9} - \frac{1}{17} a^{8} + \frac{2}{17} a^{7} + \frac{1}{17} a^{6} - \frac{2}{17} a^{5} + \frac{4}{17} a^{4} + \frac{7}{17} a^{3} - \frac{3}{17} a + \frac{5}{17}$, $\frac{1}{64386269971348759254773418774599254425929} a^{17} - \frac{1611740924838655002369900796154734647321}{64386269971348759254773418774599254425929} a^{16} - \frac{31241806857411132909815549197907831860}{64386269971348759254773418774599254425929} a^{15} - \frac{25266374884672343727099980315047323506779}{64386269971348759254773418774599254425929} a^{14} - \frac{24673220868895770642840930110722125690341}{64386269971348759254773418774599254425929} a^{13} + \frac{5653823840426846038664824440694955678151}{64386269971348759254773418774599254425929} a^{12} - \frac{8547772190498398462844290207823693219551}{64386269971348759254773418774599254425929} a^{11} + \frac{11563232694825976312099754454865628371369}{64386269971348759254773418774599254425929} a^{10} + \frac{14082251721821276485687789907922818353215}{64386269971348759254773418774599254425929} a^{9} + \frac{7506487567598372879123269534618602733248}{64386269971348759254773418774599254425929} a^{8} - \frac{6439399280010177683544948475116349585412}{64386269971348759254773418774599254425929} a^{7} + \frac{606756124953351333629545368463908676285}{3787427645373456426751377574976426730937} a^{6} + \frac{8344191942449666369016412312036123632412}{64386269971348759254773418774599254425929} a^{5} + \frac{23352033506146682143540037662927545673140}{64386269971348759254773418774599254425929} a^{4} + \frac{17487414722624561569744793272899203072131}{64386269971348759254773418774599254425929} a^{3} - \frac{7051694735914367426389346564093594764654}{64386269971348759254773418774599254425929} a^{2} + \frac{8052949658112584859689663543408717351270}{64386269971348759254773418774599254425929} a - \frac{22594232613040575294642771783619062715806}{64386269971348759254773418774599254425929}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23194986.5237 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5184 |
| The 49 conjugacy class representatives for t18n483 |
| Character table for t18n483 is not computed |
Intermediate fields
| 3.3.148.1, 6.6.1692828736.1, 9.3.1802436352.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 139 | Data not computed | ||||||