Normalized defining polynomial
\( x^{18} - 4 x^{17} - 11 x^{16} + 118 x^{15} - 58 x^{14} - 1040 x^{13} - 956 x^{12} + 11807 x^{11} + 21841 x^{10} - 75673 x^{9} - 106061 x^{8} + 95177 x^{7} + 487568 x^{6} - 513548 x^{5} - 86509 x^{4} + 237959 x^{3} + 34105 x^{2} - 82450 x - 1125 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1938264224799475334652301447895232=2^{6}\cdot 3^{23}\cdot 11^{8}\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{13} + \frac{1}{5} a^{12} - \frac{1}{15} a^{11} - \frac{7}{15} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{6} - \frac{4}{15} a^{5} + \frac{1}{3} a^{4} + \frac{2}{5} a^{3} - \frac{1}{3} a^{2} - \frac{2}{15} a$, $\frac{1}{45} a^{15} + \frac{2}{45} a^{13} + \frac{11}{45} a^{12} - \frac{2}{15} a^{11} - \frac{17}{45} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{8}{45} a^{6} + \frac{1}{5} a^{5} + \frac{16}{45} a^{4} + \frac{19}{45} a^{3} - \frac{4}{15} a^{2} - \frac{13}{45} a$, $\frac{1}{45} a^{16} - \frac{1}{45} a^{14} - \frac{1}{45} a^{13} + \frac{4}{15} a^{12} - \frac{14}{45} a^{11} + \frac{1}{15} a^{10} + \frac{1}{5} a^{8} - \frac{2}{9} a^{7} - \frac{2}{5} a^{6} - \frac{17}{45} a^{5} - \frac{1}{9} a^{4} + \frac{2}{15} a^{3} - \frac{16}{45} a^{2} - \frac{4}{15} a$, $\frac{1}{50904946429001397993732449048272508412700299547575} a^{17} - \frac{5434325737206655558241448794040024945957149363}{16968315476333799331244149682757502804233433182525} a^{16} - \frac{98565918797663132938909045579061089354604293271}{50904946429001397993732449048272508412700299547575} a^{15} - \frac{589396684519682572195549150777598583541027597597}{50904946429001397993732449048272508412700299547575} a^{14} + \frac{1949009655907667207012854646832836569315211241907}{50904946429001397993732449048272508412700299547575} a^{13} + \frac{2654413472638192585206458447907781762906183625506}{10180989285800279598746489809654501682540059909515} a^{12} + \frac{2132572491435861351640615496276465735289554940916}{5656105158777933110414716560919167601411144394175} a^{11} - \frac{24085148552104572133510141860486188305893585764428}{50904946429001397993732449048272508412700299547575} a^{10} - \frac{519784853297867111367556765217614048341656480057}{1885368386259311036804905520306389200470381464725} a^{9} - \frac{18210723521221795038547624388776892220032079071398}{50904946429001397993732449048272508412700299547575} a^{8} - \frac{3361046592049371878089190469702406133035504402597}{16968315476333799331244149682757502804233433182525} a^{7} - \frac{9245834879016092640272496411506884316830601414773}{50904946429001397993732449048272508412700299547575} a^{6} - \frac{19797368638332301748127094172207530676092440864602}{50904946429001397993732449048272508412700299547575} a^{5} + \frac{14405805863544476633640079072957616377372260308267}{50904946429001397993732449048272508412700299547575} a^{4} - \frac{8879510620756559727387782100698581376334982172984}{50904946429001397993732449048272508412700299547575} a^{3} - \frac{126297576727671219941325031103410229976092763518}{1885368386259311036804905520306389200470381464725} a^{2} - \frac{4611414662236667541464371086888318799588631997229}{10180989285800279598746489809654501682540059909515} a - \frac{63438304151929493138713833313092907129934003569}{226244206351117324416588662436766704056445775767}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 85036355911.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n662 are not computed |
| Character table for t18n662 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.3177282828271761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.12.23.50 | $x^{12} - 9 x^{11} + 6 x^{9} + 9 x^{8} + 3 x^{6} + 9 x^{5} + 9 x^{4} + 3 x^{3} - 9 x^{2} + 9 x + 3$ | $12$ | $1$ | $23$ | $(C_6\times C_2):C_2$ | $[5/2]_{4}^{2}$ | |
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.12.8.2 | $x^{12} - 1331 x^{3} + 29282$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $107$ | 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.12.6.1 | $x^{12} + 14700516 x^{6} - 14025517307 x^{2} + 54026292666564$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |