Normalized defining polynomial
\( x^{18} - 2 x^{17} + x^{16} - 5 x^{15} - 59 x^{14} + 73 x^{13} - 89 x^{12} - 319 x^{11} + 447 x^{10} - 713 x^{9} - 5 x^{8} + 1739 x^{7} - 2306 x^{6} - 97 x^{5} + 1215 x^{4} + 1053 x^{3} + 1087 x^{2} - 77 x - 121 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1924327843133559958173465369=3^{6}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{5}{11} a^{11} - \frac{3}{11} a^{9} - \frac{2}{11} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{5}{11} a^{5} - \frac{3}{11} a^{4} + \frac{3}{11} a^{3} - \frac{4}{11} a^{2} - \frac{3}{11} a$, $\frac{1}{11} a^{14} + \frac{5}{11} a^{12} - \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} - \frac{3}{11} a^{5} + \frac{3}{11} a^{4} - \frac{4}{11} a^{3} - \frac{3}{11} a^{2}$, $\frac{1}{11} a^{15} + \frac{5}{11} a^{11} - \frac{2}{11} a^{10} + \frac{2}{11} a^{9} + \frac{2}{11} a^{8} + \frac{5}{11} a^{7} + \frac{4}{11} a^{6} - \frac{5}{11} a^{5} + \frac{4}{11} a^{3} - \frac{2}{11} a^{2} + \frac{4}{11} a$, $\frac{1}{979} a^{16} + \frac{26}{979} a^{14} - \frac{42}{979} a^{13} - \frac{294}{979} a^{12} + \frac{393}{979} a^{11} + \frac{111}{979} a^{10} + \frac{472}{979} a^{9} - \frac{106}{979} a^{8} - \frac{428}{979} a^{7} - \frac{129}{979} a^{6} - \frac{29}{89} a^{5} + \frac{417}{979} a^{4} - \frac{474}{979} a^{3} + \frac{457}{979} a^{2} - \frac{182}{979} a + \frac{4}{89}$, $\frac{1}{1259597455542960495429614443} a^{17} - \frac{270079785737139466742991}{1259597455542960495429614443} a^{16} + \frac{22146418542893875578851324}{1259597455542960495429614443} a^{15} + \frac{40816356198181293003361532}{1259597455542960495429614443} a^{14} - \frac{24784854699309096433939208}{1259597455542960495429614443} a^{13} + \frac{478895263151983504769062042}{1259597455542960495429614443} a^{12} - \frac{61620699205594373747396016}{1259597455542960495429614443} a^{11} - \frac{253663865588377319169575590}{1259597455542960495429614443} a^{10} + \frac{474477806707774741077858607}{1259597455542960495429614443} a^{9} - \frac{508420842376804687141281622}{1259597455542960495429614443} a^{8} - \frac{501890005809515174955215316}{1259597455542960495429614443} a^{7} - \frac{259466310205883380573306260}{1259597455542960495429614443} a^{6} - \frac{19976521827172893090048447}{114508859594814590493601313} a^{5} - \frac{383016556659849985235770937}{1259597455542960495429614443} a^{4} - \frac{101412854650460147175638350}{1259597455542960495429614443} a^{3} + \frac{251327172140728008453642718}{1259597455542960495429614443} a^{2} + \frac{299407387340428644856364622}{1259597455542960495429614443} a + \frac{33129836612110172515980273}{114508859594814590493601313}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5000532.57269 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:D_9$ (as 18T38):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_2^2:D_9$ |
| Character table for $C_2^2:D_9$ |
Intermediate fields
| 3.3.1129.1, 6.2.11471769.2, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1129 | Data not computed | ||||||