Normalized defining polynomial
\( x^{18} - 4 x^{17} - 4 x^{16} + 31 x^{15} - 12 x^{14} + 14 x^{13} - 43 x^{12} - 274 x^{11} + 956 x^{10} - 7434 x^{9} + 3728 x^{8} + 30688 x^{7} - 36963 x^{6} + 18796 x^{5} - 7212 x^{4} + 75884 x^{3} + 13362 x^{2} - 210290 x + 118777 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1904231969930704953529379769840621=3^{9}\cdot 7^{12}\cdot 107^{6}\cdot 167^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 107, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{15624590178938399} a^{16} + \frac{6786896033846793}{15624590178938399} a^{15} + \frac{4941770758781193}{15624590178938399} a^{14} - \frac{3959479321545963}{15624590178938399} a^{13} - \frac{187019214635090}{15624590178938399} a^{12} + \frac{6987974068469567}{15624590178938399} a^{11} - \frac{7001360791515203}{15624590178938399} a^{10} + \frac{7623778316786124}{15624590178938399} a^{9} + \frac{5173720455988879}{15624590178938399} a^{8} + \frac{6736088496166602}{15624590178938399} a^{7} + \frac{6996319848372186}{15624590178938399} a^{6} - \frac{6489045093808236}{15624590178938399} a^{5} + \frac{1533675332976392}{15624590178938399} a^{4} + \frac{6538858792932013}{15624590178938399} a^{3} - \frac{1964938923570226}{15624590178938399} a^{2} - \frac{929995518035755}{15624590178938399} a - \frac{5033709085379463}{15624590178938399}$, $\frac{1}{9228125978304653767647813962539} a^{17} + \frac{62673439232972}{9228125978304653767647813962539} a^{16} + \frac{2496257221712119529949946859482}{9228125978304653767647813962539} a^{15} + \frac{3376608229882214742961791359962}{9228125978304653767647813962539} a^{14} + \frac{107195166544811620996958665425}{9228125978304653767647813962539} a^{13} - \frac{2149672901226926373212557571515}{9228125978304653767647813962539} a^{12} - \frac{4559124383896294025256187203890}{9228125978304653767647813962539} a^{11} + \frac{2629420375946215213033427307772}{9228125978304653767647813962539} a^{10} + \frac{4345515842047064149427881115947}{9228125978304653767647813962539} a^{9} + \frac{848728938022662947543660962583}{9228125978304653767647813962539} a^{8} - \frac{1331557631111406873222035149519}{9228125978304653767647813962539} a^{7} + \frac{479609346206026006169962140489}{9228125978304653767647813962539} a^{6} - \frac{4484600633796610247094476005727}{9228125978304653767647813962539} a^{5} - \frac{42854712645036270849243658389}{318211240631194957505097033191} a^{4} + \frac{863885687680091492849806588737}{9228125978304653767647813962539} a^{3} - \frac{2466068199263152842126457776210}{9228125978304653767647813962539} a^{2} - \frac{4364543495977154165598230882189}{9228125978304653767647813962539} a + \frac{4235524735468636502159693570361}{9228125978304653767647813962539}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3933666991.41 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 40 conjugacy class representatives for t18n176 |
| Character table for t18n176 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.321.1, 9.9.3891377265489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.9.2 | $x^{12} - 9 x^{4} + 27$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $107$ | 107.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $167$ | 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 167.6.3.2 | $x^{6} - 27889 x^{2} + 51232093$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |