Normalized defining polynomial
\( x^{18} + 7 x^{16} - 4 x^{15} - 37 x^{14} - 160 x^{13} - 248 x^{12} - 499 x^{11} - 715 x^{10} - 375 x^{9} - 1136 x^{8} - 25 x^{7} + 1614 x^{6} - 1182 x^{5} - 982 x^{4} + 973 x^{3} - 76 x^{2} - 276 x + 88 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1887716457505981006207134001=19^{12}\cdot 31^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} + \frac{5}{12} a^{5} - \frac{5}{12} a^{3} - \frac{1}{12} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{5}{12} a^{6} - \frac{5}{12} a^{4} - \frac{1}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{12} a^{14} - \frac{1}{4} a^{11} + \frac{1}{12} a^{10} + \frac{1}{12} a^{9} + \frac{1}{6} a^{8} + \frac{5}{12} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{12} a^{4} + \frac{5}{12} a^{3} - \frac{5}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{15} - \frac{1}{36} a^{13} + \frac{1}{36} a^{12} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{7}{36} a^{8} - \frac{4}{9} a^{7} + \frac{13}{36} a^{6} - \frac{17}{36} a^{5} + \frac{4}{9} a^{4} + \frac{1}{6} a^{3} + \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{36} a^{16} - \frac{1}{36} a^{14} + \frac{1}{36} a^{13} + \frac{1}{36} a^{12} - \frac{1}{18} a^{11} + \frac{7}{36} a^{10} + \frac{1}{18} a^{9} - \frac{1}{9} a^{8} - \frac{11}{36} a^{7} - \frac{11}{36} a^{6} - \frac{5}{36} a^{5} + \frac{1}{6} a^{4} + \frac{1}{12} a^{3} - \frac{17}{36} a^{2} + \frac{5}{18} a + \frac{1}{3}$, $\frac{1}{17954555432716115273808} a^{17} + \frac{214815823210120822511}{17954555432716115273808} a^{16} + \frac{5589328709640069803}{2244319429089514409226} a^{15} - \frac{154571563858515812395}{4488638858179028818452} a^{14} + \frac{359124526145130134695}{17954555432716115273808} a^{13} - \frac{9780154259630014025}{1632232312065101388528} a^{12} + \frac{672362438140161695591}{17954555432716115273808} a^{11} + \frac{473281841267515664599}{2992425905452685878968} a^{10} - \frac{686091085491221995957}{17954555432716115273808} a^{9} + \frac{174321471196614930605}{997475301817561959656} a^{8} + \frac{4225236961914794961023}{8977277716358057636904} a^{7} + \frac{3386016058296729164129}{17954555432716115273808} a^{6} + \frac{6686697142336648697065}{17954555432716115273808} a^{5} + \frac{3931299075503156916677}{17954555432716115273808} a^{4} - \frac{8431491558611318711519}{17954555432716115273808} a^{3} - \frac{221774501794517891293}{498737650908780979828} a^{2} - \frac{1835711963937129245903}{4488638858179028818452} a - \frac{26958166716350856583}{204029039008137673566}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9826413.58709 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times A_4$ (as 18T31):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $S_3\times A_4$ |
| Character table for $S_3\times A_4$ |
Intermediate fields
| 3.3.361.1, 3.1.31.1, 6.6.125238481.1, 9.3.1401543840871.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 31 | Data not computed | ||||||