Normalized defining polynomial
\( x^{18} - 12 x^{16} - 3 x^{15} + 60 x^{14} + 12 x^{13} - 185 x^{12} - 12 x^{11} + 384 x^{10} - 28 x^{9} - 528 x^{8} + 120 x^{7} + 481 x^{6} - 252 x^{5} - 186 x^{4} + 214 x^{3} - 72 x^{2} + 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18840693011426466715989=3^{21}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{7} a^{15} + \frac{1}{7} a^{14} + \frac{3}{7} a^{11} + \frac{1}{7} a^{10} + \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{2}{7} a^{7} + \frac{2}{7} a^{6} + \frac{1}{7} a^{5} + \frac{1}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{49} a^{16} - \frac{2}{49} a^{15} - \frac{17}{49} a^{14} + \frac{1}{7} a^{13} + \frac{10}{49} a^{12} - \frac{22}{49} a^{11} + \frac{2}{7} a^{10} - \frac{17}{49} a^{9} + \frac{5}{49} a^{8} - \frac{11}{49} a^{7} - \frac{19}{49} a^{6} - \frac{23}{49} a^{5} - \frac{23}{49} a^{4} + \frac{8}{49} a^{3} + \frac{12}{49} a^{2} - \frac{22}{49} a - \frac{10}{49}$, $\frac{1}{443042028401} a^{17} - \frac{1230412426}{443042028401} a^{16} + \frac{18142907100}{443042028401} a^{15} - \frac{136516108020}{443042028401} a^{14} - \frac{149354551392}{443042028401} a^{13} + \frac{119440472743}{443042028401} a^{12} - \frac{32756426007}{443042028401} a^{11} + \frac{55287958471}{443042028401} a^{10} + \frac{7467887208}{63291718343} a^{9} + \frac{130423486363}{443042028401} a^{8} + \frac{206656416}{63291718343} a^{7} - \frac{179731248285}{443042028401} a^{6} + \frac{13287471873}{443042028401} a^{5} - \frac{1287386704}{9041674049} a^{4} - \frac{151571452919}{443042028401} a^{3} - \frac{51923426872}{443042028401} a^{2} + \frac{5197227613}{63291718343} a - \frac{4066126937}{443042028401}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12848.0715901 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{69}) \), 3.3.621.1 x3, 3.1.23.1, 6.2.328509.1, 6.6.26609229.1, 9.3.5508110403.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | 6.0.1156923.2 |
| Degree 9 sibling: | 9.3.5508110403.1 |
| Degree 12 sibling: | 12.0.708051067974441.1 |
| Degree 18 siblings: | 18.0.819160565714194205043.1, 18.0.697803444867646915407.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $23$ | 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |