Normalized defining polynomial
\( x^{18} - 7 x^{17} + 19 x^{16} + x^{15} - 161 x^{14} + 495 x^{13} - 708 x^{12} + 205 x^{11} + 1550 x^{10} - 4811 x^{9} + 9385 x^{8} - 13607 x^{7} + 14814 x^{6} - 12128 x^{5} + 7334 x^{4} - 3101 x^{3} + 754 x^{2} - 35 x - 25 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18147624991591898888000000000=2^{12}\cdot 5^{9}\cdot 197^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{155} a^{16} + \frac{4}{155} a^{15} - \frac{27}{155} a^{14} - \frac{36}{155} a^{13} + \frac{13}{155} a^{12} + \frac{3}{155} a^{11} + \frac{3}{31} a^{10} - \frac{11}{31} a^{9} + \frac{12}{31} a^{8} + \frac{24}{155} a^{7} + \frac{64}{155} a^{6} - \frac{28}{155} a^{5} + \frac{66}{155} a^{4} - \frac{47}{155} a^{3} - \frac{53}{155} a^{2} - \frac{74}{155} a + \frac{12}{31}$, $\frac{1}{1614268454605379504635} a^{17} + \frac{7592916984113313}{322853690921075900927} a^{16} + \frac{718606157097853422592}{1614268454605379504635} a^{15} + \frac{680817568353439529767}{1614268454605379504635} a^{14} - \frac{458545491987544469883}{1614268454605379504635} a^{13} + \frac{648496591529690836621}{1614268454605379504635} a^{12} - \frac{1215552140268499317}{1614268454605379504635} a^{11} + \frac{86043452847649186442}{322853690921075900927} a^{10} - \frac{31054664421026019155}{322853690921075900927} a^{9} - \frac{113961667770374591991}{1614268454605379504635} a^{8} + \frac{638322344748055469508}{1614268454605379504635} a^{7} + \frac{465865460825204716531}{1614268454605379504635} a^{6} + \frac{441179995207365727208}{1614268454605379504635} a^{5} + \frac{504368920725380742859}{1614268454605379504635} a^{4} + \frac{153677865575296653573}{322853690921075900927} a^{3} - \frac{403127982940604787642}{1614268454605379504635} a^{2} - \frac{49673131609393705729}{146751677691398136785} a - \frac{42296773445419970671}{322853690921075900927}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10939516.986 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times S_4$ (as 18T69):
| A solvable group of order 144 |
| The 15 conjugacy class representatives for $S_3\times S_4$ |
| Character table for $S_3\times S_4$ |
Intermediate fields
| 3.3.985.1, 3.3.788.1, 6.2.77618000.2, 9.9.12049107848000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 197 | Data not computed | ||||||