Normalized defining polynomial
\( x^{18} - 9 x^{17} + 42 x^{16} - 121 x^{15} + 211 x^{14} - 140 x^{13} - 280 x^{12} + 886 x^{11} - 909 x^{10} - 249 x^{9} + 1338 x^{8} - 957 x^{7} - 259 x^{6} + 658 x^{5} - 200 x^{4} - 36 x^{3} + 76 x^{2} + 18 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17814348159507645779393633=7^{12}\cdot 13^{7}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{1}{13} a^{13} - \frac{5}{13} a^{12} - \frac{3}{13} a^{11} + \frac{6}{13} a^{10} - \frac{3}{13} a^{9} + \frac{5}{13} a^{8} + \frac{1}{13} a^{7} - \frac{2}{13} a^{6} - \frac{6}{13} a^{5} - \frac{1}{13} a^{4} - \frac{5}{13} a^{3} + \frac{2}{13} a^{2} - \frac{1}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{15} - \frac{6}{13} a^{13} + \frac{2}{13} a^{12} - \frac{4}{13} a^{11} + \frac{4}{13} a^{10} - \frac{5}{13} a^{9} - \frac{4}{13} a^{8} - \frac{3}{13} a^{7} - \frac{4}{13} a^{6} + \frac{5}{13} a^{5} - \frac{4}{13} a^{4} - \frac{6}{13} a^{3} - \frac{3}{13} a^{2} + \frac{4}{13} a - \frac{3}{13}$, $\frac{1}{377} a^{16} + \frac{12}{377} a^{15} - \frac{12}{377} a^{14} + \frac{15}{377} a^{13} + \frac{167}{377} a^{12} + \frac{13}{29} a^{11} + \frac{46}{377} a^{10} - \frac{98}{377} a^{9} - \frac{107}{377} a^{8} + \frac{2}{13} a^{7} + \frac{34}{377} a^{6} + \frac{105}{377} a^{5} - \frac{48}{377} a^{4} - \frac{2}{13} a^{3} - \frac{70}{377} a^{2} - \frac{27}{377} a - \frac{67}{377}$, $\frac{1}{15879508544147261} a^{17} + \frac{6962999216614}{15879508544147261} a^{16} + \frac{139504111515398}{15879508544147261} a^{15} + \frac{64307442887744}{15879508544147261} a^{14} - \frac{2123199290301847}{15879508544147261} a^{13} - \frac{503013507358256}{1221500657242097} a^{12} + \frac{1504218667625018}{15879508544147261} a^{11} + \frac{5398219333872078}{15879508544147261} a^{10} + \frac{4897837006277428}{15879508544147261} a^{9} + \frac{5957476589700515}{15879508544147261} a^{8} + \frac{7865305551680013}{15879508544147261} a^{7} + \frac{2119700432939911}{15879508544147261} a^{6} + \frac{5367025844290309}{15879508544147261} a^{5} - \frac{7547970453143668}{15879508544147261} a^{4} - \frac{4856097127089955}{15879508544147261} a^{3} - \frac{6595096957507434}{15879508544147261} a^{2} - \frac{2311533260696150}{15879508544147261} a - \frac{6232174220126916}{15879508544147261}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 591454.215792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 192 conjugacy class representatives for t18n839 are not computed |
| Character table for t18n839 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.5.16721334721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.3 | $x^{4} + 26$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |