Normalized defining polynomial
\( x^{18} - 616 x^{16} - 1089 x^{15} + 157899 x^{14} + 558714 x^{13} - 21067880 x^{12} - 114438093 x^{11} + 1452518286 x^{10} + 11579275791 x^{9} - 36749458486 x^{8} - 560572362906 x^{7} - 927056448710 x^{6} + 8490300074811 x^{5} + 49877012665008 x^{4} + 121979392650997 x^{3} + 159845988807863 x^{2} + 109980874355720 x + 31988346309151 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17430833533433961760936249428002260688796269=17^{6}\cdot 101^{3}\cdot 307^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $252.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 101, 307$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{11} - \frac{1}{6} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{11} - \frac{1}{3} a^{9} + \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{6}$, $\frac{1}{6} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{3} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{16} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{433969909133973186652149827552195280294959581906831769764400366203786227508369128676171876030767282} a^{17} - \frac{11238490983554922006418975562454658650345833816519307019238682638169490578386455664029645991953169}{144656636377991062217383275850731760098319860635610589921466788734595409169456376225390625343589094} a^{16} - \frac{12598337763059959454843470192703531398659551763679065285308305828609881705529496591353734263621669}{433969909133973186652149827552195280294959581906831769764400366203786227508369128676171876030767282} a^{15} - \frac{512215285609030466000812417686016807453137873283478276193889422309091833749019974014645430735725}{433969909133973186652149827552195280294959581906831769764400366203786227508369128676171876030767282} a^{14} + \frac{4161754733818408574043640432250162902674985261067926413893481985424217442307590313494461783462289}{216984954566986593326074913776097640147479790953415884882200183101893113754184564338085938015383641} a^{13} + \frac{3785080054415258504326093129752867676587463873869877897858685489568909669232721219804402370213790}{72328318188995531108691637925365880049159930317805294960733394367297704584728188112695312671794547} a^{12} - \frac{146269647744113346010657477561128313175316897148373849515945663943976103634162797438743265906101257}{433969909133973186652149827552195280294959581906831769764400366203786227508369128676171876030767282} a^{11} - \frac{11705011882692972985646816328227934274519507053874168395242234370173107021758533412427210571426137}{433969909133973186652149827552195280294959581906831769764400366203786227508369128676171876030767282} a^{10} + \frac{66448838340133733258285074331518633391451046898577833340677815142072871296184029284967198065845491}{216984954566986593326074913776097640147479790953415884882200183101893113754184564338085938015383641} a^{9} + \frac{29252404839753881804414039717829459379651897778363373242121765751324872241916365519504322984016773}{72328318188995531108691637925365880049159930317805294960733394367297704584728188112695312671794547} a^{8} - \frac{89736759456180031457398470001426091266122633880516833549095959272158217445187737589265967592192738}{216984954566986593326074913776097640147479790953415884882200183101893113754184564338085938015383641} a^{7} - \frac{103799663168052708209117135285540791878668261517502146603376901140248801417399024265005834044642039}{433969909133973186652149827552195280294959581906831769764400366203786227508369128676171876030767282} a^{6} + \frac{20425205560603842964989884987026388370333557334394284142823679868691190438040902147381658039063771}{72328318188995531108691637925365880049159930317805294960733394367297704584728188112695312671794547} a^{5} - \frac{119937209355311500045272056778660005526536121260691174456658561863332782325126699207953453312616233}{433969909133973186652149827552195280294959581906831769764400366203786227508369128676171876030767282} a^{4} + \frac{13492238053535050886465405504073100566275498899600206259877650119160792282101960717688965126406351}{72328318188995531108691637925365880049159930317805294960733394367297704584728188112695312671794547} a^{3} + \frac{61351903070679413767806266981925906192896132053767402012736318533858713938902142154510150180533852}{216984954566986593326074913776097640147479790953415884882200183101893113754184564338085938015383641} a^{2} - \frac{36331132735306248513926807625046643211311730425706740545120984126204377106883811320309331047815130}{216984954566986593326074913776097640147479790953415884882200183101893113754184564338085938015383641} a - \frac{7453922766488553632116565026650440550269221764040537454442636684324748536249610774949103339795668}{216984954566986593326074913776097640147479790953415884882200183101893113754184564338085938015383641}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 453448939916000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2160 |
| The 33 conjugacy class representatives for t18n362 |
| Character table for t18n362 is not computed |
Intermediate fields
| 3.3.94249.1, 6.2.29189.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | $15{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | $15{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | $15{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 307 | Data not computed | ||||||