Normalized defining polynomial
\( x^{18} - 7 x^{17} + 13 x^{16} + 16 x^{15} - 78 x^{14} + 35 x^{13} + 52 x^{12} + 745 x^{11} - 2901 x^{10} + 3078 x^{9} + 2511 x^{8} - 10530 x^{7} + 13871 x^{6} - 18087 x^{5} + 46905 x^{4} - 68359 x^{3} + 24115 x^{2} + 13429 x - 5473 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17171174753799627467382181888=2^{12}\cdot 7^{12}\cdot 13^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{2} a^{9} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6}$, $\frac{1}{204} a^{16} + \frac{1}{68} a^{15} - \frac{4}{51} a^{14} + \frac{19}{204} a^{13} - \frac{8}{51} a^{12} + \frac{11}{102} a^{11} + \frac{13}{51} a^{10} - \frac{101}{204} a^{9} + \frac{31}{68} a^{8} + \frac{13}{68} a^{7} - \frac{1}{102} a^{6} + \frac{23}{68} a^{5} - \frac{77}{204} a^{4} + \frac{14}{51} a^{3} - \frac{20}{51} a^{2} + \frac{25}{204} a - \frac{19}{204}$, $\frac{1}{2158748649352114704629555186346492} a^{17} + \frac{1019657494663759618724299037275}{1079374324676057352314777593173246} a^{16} + \frac{85270960323391420014201978644509}{2158748649352114704629555186346492} a^{15} + \frac{59085511596527717087606504749477}{719582883117371568209851728782164} a^{14} - \frac{71252830309319906171141336382109}{719582883117371568209851728782164} a^{13} - \frac{110378382944590558530130251385769}{1079374324676057352314777593173246} a^{12} + \frac{495357461843635394030148426016033}{1079374324676057352314777593173246} a^{11} + \frac{1074457948405131890607326499113579}{2158748649352114704629555186346492} a^{10} + \frac{493849523314345580142629287079515}{1079374324676057352314777593173246} a^{9} - \frac{41330527497457788428307084389361}{359791441558685784104925864391082} a^{8} - \frac{424098683941981336438104689381149}{2158748649352114704629555186346492} a^{7} + \frac{227535629023843535895118597664921}{719582883117371568209851728782164} a^{6} + \frac{278794353388518058123683385607909}{1079374324676057352314777593173246} a^{5} - \frac{593960502666480131146579991962835}{2158748649352114704629555186346492} a^{4} + \frac{162618486018358164386865676309651}{539687162338028676157388796586623} a^{3} + \frac{11632009382234287312578837796815}{42328404889257151071167748751892} a^{2} - \frac{176248108501480202145355316130247}{539687162338028676157388796586623} a - \frac{422935071380476213524860074985}{5127669000836376970616520632652}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18787092.4399 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times A_4^2$ (as 18T109):
| A solvable group of order 288 |
| The 32 conjugacy class representatives for $C_2\times A_4^2$ |
| Character table for $C_2\times A_4^2$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.169.1, 3.3.8281.2, 3.3.8281.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |