Normalized defining polynomial
\( x^{18} - 3 x^{17} - x^{16} + 8 x^{15} - 7 x^{14} + 20 x^{13} - 42 x^{12} - 36 x^{11} + 201 x^{10} + 86 x^{9} + 40 x^{8} - 688 x^{7} - 1362 x^{6} + 230 x^{5} + 1531 x^{4} + 1854 x^{3} + 1341 x^{2} + 257 x - 71 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(171417916195550289266477=7^{12}\cdot 1399^{3}\cdot 4523\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 1399, 4523$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14} - \frac{7}{29} a^{13} - \frac{3}{29} a^{12} - \frac{11}{29} a^{11} - \frac{5}{29} a^{10} - \frac{7}{29} a^{9} + \frac{8}{29} a^{8} + \frac{12}{29} a^{7} - \frac{6}{29} a^{6} - \frac{1}{29} a^{5} + \frac{6}{29} a^{4} - \frac{10}{29} a^{3} - \frac{4}{29} a^{2} - \frac{9}{29} a - \frac{2}{29}$, $\frac{1}{29} a^{15} + \frac{6}{29} a^{13} - \frac{3}{29} a^{12} + \frac{5}{29} a^{11} - \frac{13}{29} a^{10} - \frac{12}{29} a^{9} + \frac{10}{29} a^{8} - \frac{9}{29} a^{7} - \frac{14}{29} a^{6} - \frac{1}{29} a^{5} + \frac{3}{29} a^{4} + \frac{13}{29} a^{3} - \frac{8}{29} a^{2} - \frac{7}{29} a - \frac{14}{29}$, $\frac{1}{116899} a^{16} + \frac{72}{116899} a^{15} + \frac{1448}{116899} a^{14} + \frac{9562}{116899} a^{13} - \frac{45775}{116899} a^{12} + \frac{291}{4031} a^{11} - \frac{54239}{116899} a^{10} + \frac{41571}{116899} a^{9} + \frac{20454}{116899} a^{8} + \frac{18585}{116899} a^{7} - \frac{25263}{116899} a^{6} + \frac{38828}{116899} a^{5} + \frac{6909}{116899} a^{4} + \frac{12869}{116899} a^{3} - \frac{9}{4031} a^{2} + \frac{44359}{116899} a - \frac{6096}{116899}$, $\frac{1}{48316314300122819} a^{17} + \frac{97856236759}{48316314300122819} a^{16} - \frac{256183366832050}{48316314300122819} a^{15} - \frac{619765645136319}{48316314300122819} a^{14} - \frac{22285820785060223}{48316314300122819} a^{13} - \frac{14708002420862645}{48316314300122819} a^{12} - \frac{13860377225822237}{48316314300122819} a^{11} - \frac{13572411404706579}{48316314300122819} a^{10} - \frac{19769473866755260}{48316314300122819} a^{9} - \frac{2933859353866101}{48316314300122819} a^{8} + \frac{14189617764085607}{48316314300122819} a^{7} + \frac{22297150256615975}{48316314300122819} a^{6} - \frac{22677946919635179}{48316314300122819} a^{5} - \frac{21486980065642474}{48316314300122819} a^{4} - \frac{8739400231784770}{48316314300122819} a^{3} + \frac{16113230974335227}{48316314300122819} a^{2} - \frac{3236387727244181}{48316314300122819} a + \frac{1595442943880151}{48316314300122819}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41082.8771552 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 360 conjugacy class representatives for t18n879 are not computed |
| Character table for t18n879 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 9.3.164590951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 1399 | Data not computed | ||||||
| 4523 | Data not computed | ||||||