Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 22 x^{15} - 93 x^{14} + 524 x^{13} - 1344 x^{12} + 1690 x^{11} - 646 x^{10} - 5414 x^{9} + 17589 x^{8} - 46942 x^{7} + 96229 x^{6} - 128632 x^{5} + 136629 x^{4} - 5648 x^{3} + 77926 x^{2} + 148922 x - 161657 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(164318006876410189488454893568=2^{18}\cdot 37^{6}\cdot 97^{3}\cdot 16361^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 97, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{40290809036008426272072464312744639044849161197} a^{17} - \frac{4241605835416140436744824854207982303754237116}{40290809036008426272072464312744639044849161197} a^{16} + \frac{157069155244449724338457300449602590759349353}{40290809036008426272072464312744639044849161197} a^{15} - \frac{5162363145754884067533286434366732871294835298}{40290809036008426272072464312744639044849161197} a^{14} + \frac{19158228661559134221388495787531029142491785005}{40290809036008426272072464312744639044849161197} a^{13} - \frac{8245964804455125265194314351970462582457492697}{40290809036008426272072464312744639044849161197} a^{12} + \frac{64052931124719025127160956189283977938181845}{40290809036008426272072464312744639044849161197} a^{11} + \frac{16719412968913669806761336851127296964840224806}{40290809036008426272072464312744639044849161197} a^{10} - \frac{2949177700292806298458199757282705138149212585}{40290809036008426272072464312744639044849161197} a^{9} + \frac{1551211405019917798454346793952402967562942240}{40290809036008426272072464312744639044849161197} a^{8} + \frac{12618559459103962624398977155438420990346300765}{40290809036008426272072464312744639044849161197} a^{7} + \frac{19615969628474244369720297100898214143934690685}{40290809036008426272072464312744639044849161197} a^{6} + \frac{8519664767802790987335151404402380303161600590}{40290809036008426272072464312744639044849161197} a^{5} + \frac{14547723269578800043009940847903381209037867427}{40290809036008426272072464312744639044849161197} a^{4} + \frac{2162951097184580664134498941899742833563459569}{40290809036008426272072464312744639044849161197} a^{3} - \frac{3368042280268937748532701068051841556279369804}{40290809036008426272072464312744639044849161197} a^{2} + \frac{20031322388308118141348225136651188355013001915}{40290809036008426272072464312744639044849161197} a - \frac{18968389562463032473770352705918564999985527764}{40290809036008426272072464312744639044849161197}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 39933759.9645 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 130 conjugacy class representatives for t18n836 are not computed |
| Character table for t18n836 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 37 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 16361 | Data not computed | ||||||