Normalized defining polynomial
\( x^{18} + 17 x^{16} - 85 x^{14} - 2463 x^{12} - 3079 x^{10} + 93715 x^{8} + 275906 x^{6} - 736716 x^{4} - 2609623 x^{2} - 707281 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(164243566750563246800896000000000000=2^{36}\cdot 5^{12}\cdot 7^{12}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{29} a^{12} - \frac{12}{29} a^{10} + \frac{2}{29} a^{8} + \frac{2}{29} a^{6} - \frac{5}{29} a^{4} - \frac{13}{29} a^{2}$, $\frac{1}{29} a^{13} - \frac{12}{29} a^{11} + \frac{2}{29} a^{9} + \frac{2}{29} a^{7} - \frac{5}{29} a^{5} - \frac{13}{29} a^{3}$, $\frac{1}{1682} a^{14} + \frac{17}{1682} a^{12} + \frac{378}{841} a^{10} + \frac{30}{841} a^{8} + \frac{285}{1682} a^{6} - \frac{477}{1682} a^{4} - \frac{27}{58} a^{2} - \frac{1}{2}$, $\frac{1}{1682} a^{15} + \frac{17}{1682} a^{13} + \frac{378}{841} a^{11} + \frac{30}{841} a^{9} + \frac{285}{1682} a^{7} - \frac{477}{1682} a^{5} - \frac{27}{58} a^{3} - \frac{1}{2} a$, $\frac{1}{57043819179843384556} a^{16} - \frac{4176799639881699}{14260954794960846139} a^{14} + \frac{362664066650760087}{57043819179843384556} a^{12} + \frac{2039701412244929417}{28521909589921692278} a^{10} + \frac{4689275035012965707}{57043819179843384556} a^{8} + \frac{4709011569590323628}{14260954794960846139} a^{6} - \frac{256150471496477917}{983514123790403182} a^{4} - \frac{14109402491341995}{33914280130703558} a^{2} - \frac{629986741070909}{2338915871083004}$, $\frac{1}{57043819179843384556} a^{17} - \frac{4176799639881699}{14260954794960846139} a^{15} + \frac{362664066650760087}{57043819179843384556} a^{13} + \frac{2039701412244929417}{28521909589921692278} a^{11} + \frac{4689275035012965707}{57043819179843384556} a^{9} + \frac{4709011569590323628}{14260954794960846139} a^{7} - \frac{256150471496477917}{983514123790403182} a^{5} - \frac{14109402491341995}{33914280130703558} a^{3} - \frac{629986741070909}{2338915871083004} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13491148085.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 48 conjugacy class representatives for t18n463 |
| Character table for t18n463 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.9800.1, 9.9.941192000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.12.30.174 | $x^{12} - 2 x^{10} - 5 x^{8} - 4 x^{6} + 19 x^{4} - 2 x^{2} - 15$ | $4$ | $3$ | $30$ | 12T87 | $[2, 2, 2, 3, 7/2, 7/2]^{3}$ | |
| $5$ | 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 5.9.6.1 | $x^{9} - 25 x^{3} + 250$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |