Normalized defining polynomial
\( x^{18} - 6 x^{17} - 3 x^{16} + 126 x^{15} - 522 x^{14} + 772 x^{13} + 1553 x^{12} - 6344 x^{11} + 6485 x^{10} + 11506 x^{9} - 153869 x^{8} + 214254 x^{7} + 906829 x^{6} - 1164534 x^{5} - 2575296 x^{4} + 2823590 x^{3} + 2247322 x^{2} - 1644880 x - 792713 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1615423276403334825963036726001664=2^{33}\cdot 2113^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{31} a^{16} + \frac{12}{31} a^{15} - \frac{9}{31} a^{14} - \frac{3}{31} a^{13} - \frac{4}{31} a^{12} + \frac{2}{31} a^{11} - \frac{3}{31} a^{10} + \frac{9}{31} a^{9} - \frac{3}{31} a^{8} - \frac{1}{31} a^{7} + \frac{12}{31} a^{6} - \frac{14}{31} a^{5} + \frac{15}{31} a^{4} + \frac{11}{31} a^{3} - \frac{3}{31} a^{2} + \frac{1}{31} a + \frac{10}{31}$, $\frac{1}{3380482415124284442953001088146511461790930055865014377} a^{17} + \frac{54432808100824101908293335153572318749377159766562716}{3380482415124284442953001088146511461790930055865014377} a^{16} + \frac{142699247396915199611458778951882449688805912962649271}{3380482415124284442953001088146511461790930055865014377} a^{15} - \frac{128921955912351140009209492846262791581840169327138041}{307316583193116767541181917104228314708266368715001307} a^{14} + \frac{726959228935847728115740017586554097696061844438981030}{3380482415124284442953001088146511461790930055865014377} a^{13} + \frac{103063239971456069669259771664811756759151824079087456}{307316583193116767541181917104228314708266368715001307} a^{12} - \frac{717015589594463552582540477443068797150928590056176072}{3380482415124284442953001088146511461790930055865014377} a^{11} - \frac{1272369134175889299471234786637987642043371787005826432}{3380482415124284442953001088146511461790930055865014377} a^{10} - \frac{338179695088996799237628688618588937992457644796271613}{3380482415124284442953001088146511461790930055865014377} a^{9} + \frac{564712242447487688858790369736011218356298285735202978}{3380482415124284442953001088146511461790930055865014377} a^{8} + \frac{1167711618140257615351443631004092250346554661391870782}{3380482415124284442953001088146511461790930055865014377} a^{7} - \frac{1263587836243923087803978257829642950397916280882098668}{3380482415124284442953001088146511461790930055865014377} a^{6} - \frac{1653791304507145050804818441860649444215956380856587005}{3380482415124284442953001088146511461790930055865014377} a^{5} - \frac{29805104086764713497369133260345165562239825268057779}{109047819842718852998483906069242305219062259866613367} a^{4} + \frac{1639155415406545967966678261706968101380617970353174328}{3380482415124284442953001088146511461790930055865014377} a^{3} - \frac{1578123034726397818839907624949110126745490527246595549}{3380482415124284442953001088146511461790930055865014377} a^{2} + \frac{1587405899304591842378688113699509505431326293456224027}{3380482415124284442953001088146511461790930055865014377} a + \frac{658928163043868480903351496692128708026690312006543480}{3380482415124284442953001088146511461790930055865014377}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2596978213.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1152 |
| The 20 conjugacy class representatives for t18n273 |
| Character table for t18n273 |
Intermediate fields
| 9.9.4830237131264.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.12.24.123 | $x^{12} - 8 x^{9} - 2 x^{8} + 8 x^{7} - 8 x^{5} + 16 x^{3} - 8 x^{2} + 16 x + 8$ | $4$ | $3$ | $24$ | $A_4 \times C_2$ | $[2, 2, 3]^{3}$ | |
| 2113 | Data not computed | ||||||