Normalized defining polynomial
\( x^{18} - 3 x^{17} - 840 x^{16} - 39148 x^{15} + 372102 x^{14} + 34410474 x^{13} + 438897946 x^{12} + \cdots - 24\!\cdots\!44 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(1606252976737815398749110318939665274672826713993000000000000\) \(\medspace = 2^{12}\cdot 3^{30}\cdot 5^{12}\cdot 17^{13}\cdot 31^{12}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(2211.91\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2/3}3^{11/6}5^{2/3}17^{5/6}31^{2/3}\approx 3639.1855330031426$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(17\), \(31\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Aut(K/\Q) }$: | $6$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{6}a^{8}-\frac{1}{6}a^{7}-\frac{1}{6}a^{6}-\frac{1}{2}a^{5}-\frac{1}{3}a^{2}+\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{6}a^{9}+\frac{1}{6}a^{7}-\frac{1}{6}a^{6}-\frac{1}{2}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{36}a^{10}+\frac{1}{36}a^{9}+\frac{1}{18}a^{8}+\frac{1}{18}a^{7}+\frac{1}{36}a^{6}-\frac{1}{12}a^{5}-\frac{1}{18}a^{4}-\frac{2}{9}a^{3}+\frac{1}{18}a^{2}-\frac{1}{9}a+\frac{4}{9}$, $\frac{1}{36}a^{11}+\frac{1}{36}a^{9}-\frac{1}{36}a^{7}-\frac{1}{9}a^{6}+\frac{1}{36}a^{5}-\frac{1}{6}a^{4}+\frac{5}{18}a^{3}-\frac{1}{6}a^{2}-\frac{4}{9}a-\frac{4}{9}$, $\frac{1}{1224}a^{12}+\frac{1}{612}a^{11}+\frac{7}{1224}a^{10}+\frac{23}{306}a^{9}+\frac{35}{1224}a^{8}-\frac{25}{204}a^{7}+\frac{107}{1224}a^{6}-\frac{7}{36}a^{5}+\frac{227}{612}a^{4}-\frac{281}{612}a^{3}+\frac{11}{306}a^{2}+\frac{25}{51}a+\frac{44}{153}$, $\frac{1}{1224}a^{13}+\frac{1}{408}a^{11}+\frac{5}{612}a^{10}-\frac{13}{1224}a^{9}+\frac{13}{306}a^{8}+\frac{67}{1224}a^{7}+\frac{23}{306}a^{6}-\frac{5}{68}a^{5}+\frac{251}{612}a^{4}+\frac{10}{153}a^{3}-\frac{55}{153}a^{2}-\frac{7}{51}a-\frac{71}{153}$, $\frac{1}{19584}a^{14}+\frac{7}{19584}a^{13}-\frac{7}{19584}a^{12}-\frac{19}{6528}a^{11}-\frac{9}{2176}a^{10}+\frac{383}{6528}a^{9}-\frac{463}{19584}a^{8}-\frac{863}{19584}a^{7}-\frac{115}{816}a^{6}+\frac{11}{51}a^{5}-\frac{67}{3264}a^{4}-\frac{207}{544}a^{3}+\frac{899}{2448}a^{2}-\frac{79}{816}a-\frac{545}{1224}$, $\frac{1}{19584}a^{15}-\frac{1}{2448}a^{13}-\frac{1}{2448}a^{12}-\frac{41}{9792}a^{11}+\frac{5}{4896}a^{10}+\frac{67}{1088}a^{9}+\frac{29}{1088}a^{8}-\frac{3839}{19584}a^{7}-\frac{65}{272}a^{6}-\frac{4361}{9792}a^{5}+\frac{3745}{9792}a^{4}-\frac{2425}{4896}a^{3}+\frac{27}{136}a^{2}+\frac{307}{816}a-\frac{337}{1224}$, $\frac{1}{24\!\cdots\!64}a^{16}-\frac{32\!\cdots\!35}{13\!\cdots\!48}a^{15}-\frac{14\!\cdots\!27}{67\!\cdots\!24}a^{14}-\frac{65\!\cdots\!77}{60\!\cdots\!16}a^{13}-\frac{20\!\cdots\!63}{12\!\cdots\!32}a^{12}-\frac{70\!\cdots\!03}{60\!\cdots\!16}a^{11}+\frac{11\!\cdots\!89}{12\!\cdots\!32}a^{10}-\frac{27\!\cdots\!63}{12\!\cdots\!32}a^{9}+\frac{62\!\cdots\!53}{14\!\cdots\!92}a^{8}+\frac{84\!\cdots\!89}{40\!\cdots\!44}a^{7}-\frac{19\!\cdots\!93}{13\!\cdots\!48}a^{6}+\frac{28\!\cdots\!63}{71\!\cdots\!96}a^{5}-\frac{14\!\cdots\!17}{30\!\cdots\!08}a^{4}-\frac{12\!\cdots\!53}{30\!\cdots\!08}a^{3}-\frac{48\!\cdots\!05}{13\!\cdots\!96}a^{2}+\frac{91\!\cdots\!55}{75\!\cdots\!52}a+\frac{34\!\cdots\!29}{75\!\cdots\!52}$, $\frac{1}{24\!\cdots\!64}a^{17}+\frac{20\!\cdots\!57}{12\!\cdots\!32}a^{16}+\frac{49\!\cdots\!61}{61\!\cdots\!16}a^{15}+\frac{49\!\cdots\!63}{61\!\cdots\!16}a^{14}+\frac{11\!\cdots\!57}{12\!\cdots\!32}a^{13}-\frac{58\!\cdots\!11}{61\!\cdots\!16}a^{12}-\frac{75\!\cdots\!03}{12\!\cdots\!32}a^{11}-\frac{32\!\cdots\!13}{24\!\cdots\!32}a^{10}+\frac{45\!\cdots\!07}{82\!\cdots\!88}a^{9}+\frac{11\!\cdots\!87}{12\!\cdots\!32}a^{8}+\frac{11\!\cdots\!83}{12\!\cdots\!32}a^{7}-\frac{24\!\cdots\!81}{12\!\cdots\!32}a^{6}-\frac{10\!\cdots\!23}{30\!\cdots\!08}a^{5}+\frac{43\!\cdots\!59}{91\!\cdots\!84}a^{4}+\frac{17\!\cdots\!61}{30\!\cdots\!08}a^{3}+\frac{85\!\cdots\!21}{77\!\cdots\!52}a^{2}-\frac{50\!\cdots\!95}{77\!\cdots\!52}a+\frac{30\!\cdots\!29}{12\!\cdots\!43}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
not computed
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{6}\cdot(2\pi)^{6}\cdot R \cdot h}{2\cdot\sqrt{1606252976737815398749110318939665274672826713993000000000000}}\cr\mathstrut & \text{
Galois group
$C_3^2:D_6$ (as 18T52):
A solvable group of order 108 |
The 20 conjugacy class representatives for $C_3^2:D_6$ |
Character table for $C_3^2:D_6$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.1.24300.2, 6.2.2901077370000.16, 9.3.1063615528562424054507000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 18 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 18.6.7075249356458293708862869717627850394458877005700000000.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.6.0.1}{6} }^{3}$ | ${\href{/padicField/11.6.0.1}{6} }^{3}$ | ${\href{/padicField/13.3.0.1}{3} }^{6}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.1.0.1}{1} }^{6}$ | ${\href{/padicField/23.2.0.1}{2} }^{9}$ | ${\href{/padicField/29.6.0.1}{6} }^{3}$ | R | ${\href{/padicField/37.6.0.1}{6} }^{3}$ | ${\href{/padicField/41.6.0.1}{6} }^{3}$ | ${\href{/padicField/43.3.0.1}{3} }^{6}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}{,}\,{\href{/padicField/47.1.0.1}{1} }^{6}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
2.3.2.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(3\) | 3.6.10.2 | $x^{6} - 36 x^{4} - 12 x^{3} + 648 x^{2} + 864 x + 360$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ |
3.6.10.2 | $x^{6} - 36 x^{4} - 12 x^{3} + 648 x^{2} + 864 x + 360$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
3.6.10.2 | $x^{6} - 36 x^{4} - 12 x^{3} + 648 x^{2} + 864 x + 360$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
\(5\) | 5.6.4.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
5.6.4.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
5.6.4.1 | $x^{6} + 12 x^{5} + 54 x^{4} + 122 x^{3} + 168 x^{2} + 228 x + 233$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.6.3.1 | $x^{6} + 459 x^{5} + 70280 x^{4} + 3597823 x^{3} + 1271380 x^{2} + 4696159 x + 50437479$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
17.12.10.2 | $x^{12} - 3060 x^{6} - 197676$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |
\(31\) | 31.6.4.1 | $x^{6} + 87 x^{5} + 2532 x^{4} + 24973 x^{3} + 10293 x^{2} + 78438 x + 748956$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
31.6.4.2 | $x^{6} - 899 x^{3} + 2883$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
31.6.4.3 | $x^{6} - 62 x^{3} - 795708$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |