Properties

Label 18.6.15928224673...2976.4
Degree $18$
Signature $[6, 6]$
Discriminant $2^{24}\cdot 3^{6}\cdot 7^{12}\cdot 97^{2}$
Root discriminant $22.11$
Ramified primes $2, 3, 7, 97$
Class number $1$
Class group Trivial
Galois group 18T463

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -24, -4, 520, 2523, 4290, 2699, -480, -2043, -1456, 96, 642, 220, -18, -51, -30, 1, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 + x^16 - 30*x^15 - 51*x^14 - 18*x^13 + 220*x^12 + 642*x^11 + 96*x^10 - 1456*x^9 - 2043*x^8 - 480*x^7 + 2699*x^6 + 4290*x^5 + 2523*x^4 + 520*x^3 - 4*x^2 - 24*x + 1)
 
gp: K = bnfinit(x^18 + x^16 - 30*x^15 - 51*x^14 - 18*x^13 + 220*x^12 + 642*x^11 + 96*x^10 - 1456*x^9 - 2043*x^8 - 480*x^7 + 2699*x^6 + 4290*x^5 + 2523*x^4 + 520*x^3 - 4*x^2 - 24*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} + x^{16} - 30 x^{15} - 51 x^{14} - 18 x^{13} + 220 x^{12} + 642 x^{11} + 96 x^{10} - 1456 x^{9} - 2043 x^{8} - 480 x^{7} + 2699 x^{6} + 4290 x^{5} + 2523 x^{4} + 520 x^{3} - 4 x^{2} - 24 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1592822467387587324542976=2^{24}\cdot 3^{6}\cdot 7^{12}\cdot 97^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 97$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{41} a^{16} + \frac{8}{41} a^{15} + \frac{11}{41} a^{14} - \frac{5}{41} a^{13} + \frac{12}{41} a^{12} + \frac{20}{41} a^{11} + \frac{19}{41} a^{10} + \frac{1}{41} a^{9} - \frac{20}{41} a^{8} + \frac{11}{41} a^{7} - \frac{14}{41} a^{6} + \frac{3}{41} a^{5} - \frac{6}{41} a^{4} - \frac{20}{41} a^{3} - \frac{19}{41} a^{2} + \frac{13}{41} a + \frac{19}{41}$, $\frac{1}{46227603872094443201063569} a^{17} - \frac{544686280888599592279523}{46227603872094443201063569} a^{16} + \frac{4330892649165844580976204}{46227603872094443201063569} a^{15} - \frac{20301025325935462930329235}{46227603872094443201063569} a^{14} + \frac{16610848877673730340998221}{46227603872094443201063569} a^{13} - \frac{10733702105681935693876812}{46227603872094443201063569} a^{12} + \frac{14125069078435923791068412}{46227603872094443201063569} a^{11} - \frac{1886308102968825578393561}{46227603872094443201063569} a^{10} - \frac{17904300976759231619574860}{46227603872094443201063569} a^{9} - \frac{5799161568511995735578020}{46227603872094443201063569} a^{8} + \frac{1437409075711954491920348}{46227603872094443201063569} a^{7} + \frac{8370448182232588001408793}{46227603872094443201063569} a^{6} - \frac{4724649214721143056687930}{46227603872094443201063569} a^{5} - \frac{6344008355687167882605686}{46227603872094443201063569} a^{4} + \frac{10832329282303311126177693}{46227603872094443201063569} a^{3} + \frac{10605386746342507166083269}{46227603872094443201063569} a^{2} + \frac{1537334770641718035859420}{46227603872094443201063569} a - \frac{5062410693171704769408759}{46227603872094443201063569}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 147840.762004 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T463:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4608
The 48 conjugacy class representatives for t18n463
Character table for t18n463 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 3.1.588.1, 9.3.203297472.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
$97$$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.1.2$x^{2} + 485$$2$$1$$1$$C_2$$[\ ]_{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
97.2.1.2$x^{2} + 485$$2$$1$$1$$C_2$$[\ ]_{2}$
97.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$