Normalized defining polynomial
\( x^{18} - 4 x^{17} - x^{16} + 47 x^{15} - 142 x^{14} + 10 x^{13} + 513 x^{12} - 1210 x^{11} + 2132 x^{10} - 1078 x^{9} - 4654 x^{8} + 14964 x^{7} - 18245 x^{6} + 4800 x^{5} + 14840 x^{4} - 21560 x^{3} + 5600 x^{2} + 11200 x - 8000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1576842515554179577386119140625=5^{9}\cdot 37\cdot 139^{4}\cdot 197^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 37, 139, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{10} a^{13} + \frac{2}{5} a^{12} - \frac{1}{2} a^{11} + \frac{3}{10} a^{10} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{12} + \frac{3}{20} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{7}{20} a^{8} + \frac{1}{10} a^{7} + \frac{1}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{200} a^{15} + \frac{1}{50} a^{14} - \frac{1}{40} a^{13} - \frac{97}{200} a^{12} - \frac{9}{100} a^{11} - \frac{1}{100} a^{10} + \frac{13}{40} a^{9} - \frac{29}{100} a^{8} - \frac{4}{25} a^{7} + \frac{17}{100} a^{6} + \frac{1}{4} a^{5} - \frac{1}{10} a^{4} + \frac{7}{40} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{14000} a^{16} + \frac{17}{7000} a^{15} - \frac{9}{2800} a^{14} + \frac{513}{14000} a^{13} - \frac{108}{875} a^{12} - \frac{3111}{7000} a^{11} + \frac{1257}{2800} a^{10} + \frac{1153}{3500} a^{9} - \frac{149}{500} a^{8} - \frac{823}{7000} a^{7} - \frac{661}{1400} a^{6} - \frac{139}{350} a^{5} + \frac{1087}{2800} a^{4} + \frac{669}{1400} a^{3} - \frac{33}{140} a^{2} + \frac{3}{35} a - \frac{3}{7}$, $\frac{1}{329412825702777271984952500000} a^{17} - \frac{767343809307690444622931}{32941282570277727198495250000} a^{16} - \frac{362064329300498667318428641}{329412825702777271984952500000} a^{15} + \frac{8200229779075948067278953193}{329412825702777271984952500000} a^{14} - \frac{67900684762131945100982867}{3294128257027772719849525000} a^{13} + \frac{14878476290719637858480326771}{32941282570277727198495250000} a^{12} + \frac{47649080751774170268288866253}{329412825702777271984952500000} a^{11} - \frac{4502983274599941770733721657}{82353206425694317996238125000} a^{10} + \frac{3037046799261812426896691}{117647437750991882851768750} a^{9} + \frac{55773021542101743400555137561}{164706412851388635992476250000} a^{8} - \frac{30818216703224828414155939993}{164706412851388635992476250000} a^{7} - \frac{602807811900157661963807379}{4117660321284715899811906250} a^{6} + \frac{4465064672469224345906056987}{13176513028111090879398100000} a^{5} + \frac{3337552835703737247820917}{1317651302811109087939810000} a^{4} + \frac{833805906696843652008122199}{2058830160642357949905953125} a^{3} + \frac{528792156803056364817760027}{1647064128513886359924762500} a^{2} + \frac{407687566609945157237921883}{823532064256943179962381250} a - \frac{3335697408857486665941206}{11764743775099188285176875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 329279852.39 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 165888 |
| The 168 conjugacy class representatives for t18n835 are not computed |
| Character table for t18n835 is not computed |
Intermediate fields
| 3.3.985.1, 9.9.92322657333125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 37 | Data not computed | ||||||
| $139$ | 139.6.4.1 | $x^{6} + 695 x^{3} + 154568$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 139.12.0.1 | $x^{12} - x + 22$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $197$ | 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 197.4.2.1 | $x^{4} + 985 x^{2} + 349281$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 197.8.4.1 | $x^{8} + 1397124 x^{4} - 7645373 x^{2} + 487988867844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |