Properties

Label 18.6.14610422921...5693.2
Degree $18$
Signature $[6, 6]$
Discriminant $19^{16}\cdot 37^{3}$
Root discriminant $25.01$
Ramified primes $19, 37$
Class number $1$
Class group Trivial
Galois group 18T264

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![151, -962, 2125, -1877, -88, 2930, -5361, 6230, -5477, 3836, -2111, 746, 3, -222, 179, -91, 33, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 8*x^17 + 33*x^16 - 91*x^15 + 179*x^14 - 222*x^13 + 3*x^12 + 746*x^11 - 2111*x^10 + 3836*x^9 - 5477*x^8 + 6230*x^7 - 5361*x^6 + 2930*x^5 - 88*x^4 - 1877*x^3 + 2125*x^2 - 962*x + 151)
 
gp: K = bnfinit(x^18 - 8*x^17 + 33*x^16 - 91*x^15 + 179*x^14 - 222*x^13 + 3*x^12 + 746*x^11 - 2111*x^10 + 3836*x^9 - 5477*x^8 + 6230*x^7 - 5361*x^6 + 2930*x^5 - 88*x^4 - 1877*x^3 + 2125*x^2 - 962*x + 151, 1)
 

Normalized defining polynomial

\( x^{18} - 8 x^{17} + 33 x^{16} - 91 x^{15} + 179 x^{14} - 222 x^{13} + 3 x^{12} + 746 x^{11} - 2111 x^{10} + 3836 x^{9} - 5477 x^{8} + 6230 x^{7} - 5361 x^{6} + 2930 x^{5} - 88 x^{4} - 1877 x^{3} + 2125 x^{2} - 962 x + 151 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(14610422921440715006545693=19^{16}\cdot 37^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.01$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $19, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3171800627722142832875917} a^{17} + \frac{854065052494632245749037}{3171800627722142832875917} a^{16} + \frac{49966266641013954982046}{3171800627722142832875917} a^{15} + \frac{400854224949631080214795}{3171800627722142832875917} a^{14} - \frac{207036271861609801481430}{3171800627722142832875917} a^{13} + \frac{1157924033414689722609379}{3171800627722142832875917} a^{12} + \frac{1236696133049310655665688}{3171800627722142832875917} a^{11} + \frac{133112957303243107134534}{3171800627722142832875917} a^{10} + \frac{681199946006265036724096}{3171800627722142832875917} a^{9} + \frac{600900331383878873549130}{3171800627722142832875917} a^{8} + \frac{995692114555675108473619}{3171800627722142832875917} a^{7} - \frac{230978808136069545316482}{3171800627722142832875917} a^{6} - \frac{775788254315077369100517}{3171800627722142832875917} a^{5} - \frac{470896178848686157268856}{3171800627722142832875917} a^{4} + \frac{525441847081563975257987}{3171800627722142832875917} a^{3} - \frac{110932881056429474116900}{3171800627722142832875917} a^{2} - \frac{426869191026442571044061}{3171800627722142832875917} a - \frac{320453317373043826960972}{3171800627722142832875917}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 343955.827687 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T264:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1152
The 32 conjugacy class representatives for t18n264
Character table for t18n264 is not computed

Intermediate fields

3.3.361.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $18$ ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ $18$ $18$ R $18$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ $18$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ $18$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
19Data not computed
37Data not computed