Normalized defining polynomial
\( x^{18} - 108 x^{16} - 81 x^{15} + 4482 x^{14} + 7290 x^{13} - 87018 x^{12} - 242028 x^{11} + 634635 x^{10} + 3595266 x^{9} + 3818016 x^{8} - 19473048 x^{7} - 93602247 x^{6} - 62244207 x^{5} + 469197468 x^{4} + 921309390 x^{3} + 291125718 x^{2} - 546084423 x - 989652329 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142660962891827847357688087745406439211942561=7^{12}\cdot 43^{3}\cdot 181\cdot 894708527^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $283.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 43, 181, 894708527$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{4} - \frac{1}{9} a^{2} - \frac{2}{9}$, $\frac{1}{9} a^{5} - \frac{1}{9} a^{3} - \frac{2}{9} a$, $\frac{1}{27} a^{6} - \frac{1}{9} a^{2} - \frac{2}{27}$, $\frac{1}{27} a^{7} - \frac{1}{9} a^{3} - \frac{2}{27} a$, $\frac{1}{81} a^{8} + \frac{1}{81} a^{6} - \frac{1}{27} a^{4} - \frac{5}{81} a^{2} - \frac{2}{81}$, $\frac{1}{81} a^{9} + \frac{1}{81} a^{7} - \frac{1}{27} a^{5} - \frac{5}{81} a^{3} - \frac{2}{81} a$, $\frac{1}{243} a^{10} - \frac{1}{243} a^{8} + \frac{4}{243} a^{6} + \frac{1}{243} a^{4} - \frac{19}{243} a^{2} - \frac{14}{243}$, $\frac{1}{243} a^{11} - \frac{1}{243} a^{9} + \frac{4}{243} a^{7} + \frac{1}{243} a^{5} - \frac{19}{243} a^{3} - \frac{14}{243} a$, $\frac{1}{729} a^{12} + \frac{1}{243} a^{8} + \frac{5}{729} a^{6} - \frac{2}{81} a^{4} - \frac{11}{243} a^{2} - \frac{14}{729}$, $\frac{1}{729} a^{13} + \frac{1}{243} a^{9} + \frac{5}{729} a^{7} - \frac{2}{81} a^{5} - \frac{11}{243} a^{3} - \frac{14}{729} a$, $\frac{1}{2187} a^{14} + \frac{1}{2187} a^{12} + \frac{1}{729} a^{10} + \frac{8}{2187} a^{8} - \frac{13}{2187} a^{6} - \frac{17}{729} a^{4} - \frac{47}{2187} a^{2} - \frac{14}{2187}$, $\frac{1}{2187} a^{15} + \frac{1}{2187} a^{13} + \frac{1}{729} a^{11} + \frac{8}{2187} a^{9} - \frac{13}{2187} a^{7} - \frac{17}{729} a^{5} - \frac{47}{2187} a^{3} - \frac{14}{2187} a$, $\frac{1}{6561} a^{16} - \frac{1}{6561} a^{14} + \frac{1}{6561} a^{12} + \frac{2}{6561} a^{10} - \frac{29}{6561} a^{8} - \frac{25}{6561} a^{6} + \frac{55}{6561} a^{4} + \frac{80}{6561} a^{2} + \frac{28}{6561}$, $\frac{1}{87321085692795868937157717662346267538953} a^{17} + \frac{797403405425871061298247894772485475}{29107028564265289645719239220782089179651} a^{16} + \frac{11054744751920358951896037136378161332}{87321085692795868937157717662346267538953} a^{15} - \frac{1190098026120117367822121495587790072}{9702342854755096548573079740260696393217} a^{14} + \frac{55762634566013565787806175187836480756}{87321085692795868937157717662346267538953} a^{13} + \frac{9507086590375692447816838194376818452}{29107028564265289645719239220782089179651} a^{12} + \frac{74628515209341801865499658980564689325}{87321085692795868937157717662346267538953} a^{11} + \frac{49026358241729841542433929709762939878}{29107028564265289645719239220782089179651} a^{10} + \frac{475877339832064151143454201155469012788}{87321085692795868937157717662346267538953} a^{9} - \frac{44140464979800494908028756205800982707}{9702342854755096548573079740260696393217} a^{8} - \frac{1495288743145305024959909695515436063600}{87321085692795868937157717662346267538953} a^{7} + \frac{257979997796946320437443881480540744506}{29107028564265289645719239220782089179651} a^{6} - \frac{4829732640341675508439655958484422083420}{87321085692795868937157717662346267538953} a^{5} - \frac{759459069320067316733288093851550598776}{29107028564265289645719239220782089179651} a^{4} - \frac{10292188744082239669023488653359475330105}{87321085692795868937157717662346267538953} a^{3} + \frac{163673312667141104790496256767352765764}{1078038094972788505397008860028966265913} a^{2} - \frac{390880608990263231719981147462931087117}{87321085692795868937157717662346267538953} a - \frac{5893450966029429018791953528701621028858}{29107028564265289645719239220782089179651}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1032214003040000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 267 conjugacy class representatives for t18n926 are not computed |
| Character table for t18n926 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.2.92372392453061.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }$ | $18$ | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ | R | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.6.3.1 | $x^{6} - 86 x^{4} + 1849 x^{2} - 7950700$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 181 | Data not computed | ||||||
| 894708527 | Data not computed | ||||||