Normalized defining polynomial
\( x^{18} - 29 x^{16} - 2 x^{15} + 258 x^{14} + 101 x^{13} - 1745 x^{12} - 996 x^{11} + 12519 x^{10} + 5395 x^{9} - 49182 x^{8} - 35396 x^{7} + 175361 x^{6} + 89541 x^{5} - 456825 x^{4} - 287615 x^{3} + 386586 x^{2} + 45292 x + 1448 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1423412790087114698885283875798061=3^{23}\cdot 11^{8}\cdot 47\cdot 107^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 47, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{14} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{132} a^{15} + \frac{3}{44} a^{14} - \frac{2}{33} a^{13} + \frac{3}{22} a^{12} - \frac{1}{11} a^{11} + \frac{61}{132} a^{10} - \frac{14}{33} a^{9} + \frac{5}{11} a^{8} + \frac{59}{132} a^{7} - \frac{1}{2} a^{6} + \frac{4}{11} a^{5} - \frac{13}{33} a^{4} + \frac{17}{132} a^{3} - \frac{1}{22} a^{2} + \frac{13}{132} a + \frac{7}{66}$, $\frac{1}{1188} a^{16} + \frac{1}{297} a^{15} - \frac{53}{1188} a^{14} + \frac{29}{594} a^{13} + \frac{3}{22} a^{12} + \frac{11}{108} a^{11} - \frac{361}{1188} a^{10} + \frac{52}{297} a^{9} - \frac{109}{1188} a^{8} + \frac{563}{1188} a^{7} + \frac{7}{22} a^{6} - \frac{106}{297} a^{5} - \frac{251}{1188} a^{4} - \frac{487}{1188} a^{3} + \frac{43}{1188} a^{2} - \frac{17}{396} a + \frac{163}{594}$, $\frac{1}{6198868142663479494562295856592213503575088} a^{17} + \frac{881466618265926340797135098908653827791}{3099434071331739747281147928296106751787544} a^{16} + \frac{351912909830488524777177501831458280541}{563533467514861772232935986962928500325008} a^{15} + \frac{27493957676119276453085230976912012716664}{387429258916467468410143491037013343973443} a^{14} + \frac{184005355654390099896446132646857333025977}{3099434071331739747281147928296106751787544} a^{13} - \frac{1979711964247760959366512351923061856589951}{6198868142663479494562295856592213503575088} a^{12} - \frac{262412528168586773817244155177519597074651}{688763126962608832729143984065801500397232} a^{11} - \frac{98368633658110226946431936106728583434593}{1033144690443913249093715976098702250595848} a^{10} + \frac{134532808429070660521563375340200987343097}{2066289380887826498187431952197404501191696} a^{9} + \frac{1367122646333861807764173783734026635902197}{6198868142663479494562295856592213503575088} a^{8} - \frac{289461333066638408712918208669648508273087}{774858517832934936820286982074026687946886} a^{7} + \frac{1505623569109419035188643000092300993357}{6826947293682246139385788388317415752836} a^{6} - \frac{140040814196271086527129463293642761232541}{2066289380887826498187431952197404501191696} a^{5} - \frac{1029589032743674591009276712284349885725183}{2066289380887826498187431952197404501191696} a^{4} + \frac{24886464527888502938376764625315855162313}{76529236329178759192127109340644611155248} a^{3} + \frac{2732621047641199557708684601890779473727239}{6198868142663479494562295856592213503575088} a^{2} - \frac{481026372500816373510126731341099926963649}{1549717035665869873640573964148053375893772} a + \frac{25873394300167931738138792637439097883691}{140883366878715443058233996740732125081252}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22944300250.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n662 are not computed |
| Character table for t18n662 is not computed |
Intermediate fields
| 3.3.321.1, 9.9.3177282828271761.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.12.22.44 | $x^{12} + 36 x^{11} - 27 x^{10} - 33 x^{9} - 18 x^{8} + 9 x^{7} - 24 x^{6} - 36 x^{3} - 27 x^{2} - 27 x + 36$ | $6$ | $2$ | $22$ | $D_6$ | $[5/2]_{2}^{2}$ | |
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 11.6.4.2 | $x^{6} - 11 x^{3} + 847$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| $107$ | 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 107.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |