Normalized defining polynomial
\( x^{18} - 6 x^{16} - 136 x^{15} - 35001 x^{14} + 119340 x^{13} + 957484 x^{12} - 202896 x^{11} + 233675115 x^{10} - 2033502752 x^{9} + 272513106 x^{8} + 55913318808 x^{7} - 253258909175 x^{6} + 18048051900 x^{5} + 2492339844720 x^{4} - 5055629947608 x^{3} - 2688635549088 x^{2} + 20583488547936 x - 20669191866896 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(140250563298174994466424880921916297888335707242496=2^{34}\cdot 3^{24}\cdot 13\cdot 37^{7}\cdot 89^{4}\cdot 139^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $610.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 37, 89, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{9} + \frac{1}{4} a^{7} + \frac{1}{3} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{10} - \frac{1}{4} a^{8} + \frac{1}{3} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{11} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{12} a^{12} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{4} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{14} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{148452} a^{15} - \frac{1}{24742} a^{13} - \frac{34}{37113} a^{12} + \frac{176}{12371} a^{11} - \frac{2185}{74226} a^{10} + \frac{1639}{49484} a^{9} + \frac{3297}{24742} a^{8} - \frac{176}{37113} a^{7} - \frac{1814}{37113} a^{6} - \frac{2551}{49484} a^{5} + \frac{5052}{12371} a^{4} - \frac{69337}{148452} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{296904} a^{16} - \frac{1}{49484} a^{14} - \frac{17}{37113} a^{13} - \frac{10259}{296904} a^{12} - \frac{2185}{148452} a^{11} - \frac{3727}{148452} a^{10} - \frac{620}{37113} a^{9} + \frac{36409}{296904} a^{8} - \frac{14185}{74226} a^{7} + \frac{32107}{74226} a^{6} - \frac{7319}{24742} a^{5} - \frac{143563}{296904} a^{4} + \frac{5}{12} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{3651412483271918362854559728737667490646134210581061295247037164423528550975856792289437596508172072} a^{17} + \frac{1588990568734338803245906203209572373279535930740614773114327897379200037125791782417903136}{456426560408989795356819966092208436330766776322632661905879645552941068871982099036179699563521509} a^{16} + \frac{369164183326861874295805257985872426713976909504312147642046695772136419015769596511791438656}{152142186802996598452273322030736145443588925440877553968626548517647022957327366345393233187840503} a^{15} + \frac{46741339312727702890583220588434634806577190158979959299687137678053052817307436130091832702969385}{1825706241635959181427279864368833745323067105290530647623518582211764275487928396144718798254086036} a^{14} + \frac{48546686288415119025245915618295452893852495144821055743779587823447081888507340938296207307096537}{1217137494423972787618186576245889163548711403527020431749012388141176183658618930763145865502724024} a^{13} - \frac{17972170155818481629095307993026221473849550254019385138187848910853568181128776907044259999633325}{1825706241635959181427279864368833745323067105290530647623518582211764275487928396144718798254086036} a^{12} - \frac{28673487812332244438702143203956383519761999148783942138998658699312829327971366524177148340633245}{912853120817979590713639932184416872661533552645265323811759291105882137743964198072359399127043018} a^{11} + \frac{2722733465061603127719443493474032210739818961495095860512386357342775430306839607967060208129953}{304284373605993196904546644061472290887177850881755107937253097035294045914654732690786466375681006} a^{10} - \frac{11621334167404717208993085914855832199192985592354065060186904766120255059873089505245282891056141}{3651412483271918362854559728737667490646134210581061295247037164423528550975856792289437596508172072} a^{9} + \frac{1483964206617248289641698563338140760709174597660119232680332465658523519966397674301739795420803}{6567288638978270436788776490535373184615349299606225351163735907236562142042907899801146756309662} a^{8} + \frac{36902662568642472176042849094339684529927947371519311018922952694747044542136438836676507666666465}{152142186802996598452273322030736145443588925440877553968626548517647022957327366345393233187840503} a^{7} - \frac{100076224029009066679031520261953310804880104629866601606407378392320101050040848230902513488541361}{608568747211986393809093288122944581774355701763510215874506194070588091829309465381572932751362012} a^{6} + \frac{172206683318995704479380232554773481096367615973393150543053335437538132590608432598369492667336771}{1217137494423972787618186576245889163548711403527020431749012388141176183658618930763145865502724024} a^{5} - \frac{615394623560293746750233870283431899064163967388064667441172312239506805484155602330332204711124517}{1825706241635959181427279864368833745323067105290530647623518582211764275487928396144718798254086036} a^{4} + \frac{49439516053433791418834323110017517982706633965556919647217456844470215545160375495363018112222773}{456426560408989795356819966092208436330766776322632661905879645552941068871982099036179699563521509} a^{3} - \frac{2838482969273476762421635121434752845668889266049700538966033074917368476903494562144342459260}{36894879994259946274094249946827939239412074716888906467211999478857090685634314043826667170279} a^{2} - \frac{11692084081407911932090588101587251945838031810405925015169405939902800519651751993577096904661}{36894879994259946274094249946827939239412074716888906467211999478857090685634314043826667170279} a + \frac{4329565940368249322868677920106617370522971844197070367544986686323625681223342599298424310774}{12298293331419982091364749982275979746470691572296302155737333159619030228544771347942222390093}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 650910748126000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 174 conjugacy class representatives for t18n930 are not computed |
| Character table for t18n930 is not computed |
Intermediate fields
| 3.3.148.1, 6.2.1401856.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.10.1 | $x^{6} + 2 x^{5} + 2 x^{4} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.12.24.456 | $x^{12} + 2 x^{10} + 4 x^{9} + 2 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | 12T101 | $[4/3, 4/3, 2, 8/3, 8/3]_{3}^{2}$ | |
| $3$ | 3.9.12.10 | $x^{9} + 24 x^{6} + 18 x^{5} + 27$ | $3$ | $3$ | $12$ | $C_3 \wr C_3 $ | $[2, 2, 2]^{3}$ |
| 3.9.12.6 | $x^{9} + 3 x^{8} + 6 x^{6} + 27$ | $3$ | $3$ | $12$ | $C_9:C_3$ | $[2, 2]^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37 | Data not computed | ||||||
| $89$ | 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.6.4.2 | $x^{6} - 89 x^{3} + 47526$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 139 | Data not computed | ||||||