Normalized defining polynomial
\( x^{18} - 3 x^{17} - 6 x^{16} + 40 x^{15} + 105 x^{14} - 315 x^{13} - 789 x^{12} + 1199 x^{11} + 2510 x^{10} - 1744 x^{9} - 12805 x^{8} + 2481 x^{7} + 38284 x^{6} - 585 x^{5} - 15597 x^{4} + 8586 x^{3} - 1377 x^{2} + 2187 x - 729 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(133707789078524297066338191133=37^{3}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} + \frac{2}{9} a^{6} - \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{297} a^{15} - \frac{1}{99} a^{14} + \frac{16}{99} a^{13} + \frac{13}{297} a^{12} + \frac{5}{99} a^{11} + \frac{4}{33} a^{10} - \frac{2}{99} a^{9} + \frac{119}{297} a^{8} + \frac{116}{297} a^{7} - \frac{8}{27} a^{6} - \frac{79}{297} a^{5} - \frac{25}{99} a^{4} - \frac{137}{297} a^{3} - \frac{2}{11} a^{2} + \frac{5}{33} a - \frac{2}{11}$, $\frac{1}{891} a^{16} + \frac{13}{297} a^{14} - \frac{140}{891} a^{13} - \frac{5}{99} a^{12} + \frac{1}{11} a^{11} + \frac{34}{297} a^{10} + \frac{101}{891} a^{9} + \frac{25}{81} a^{8} + \frac{359}{891} a^{7} + \frac{53}{891} a^{6} + \frac{28}{297} a^{5} - \frac{65}{891} a^{4} + \frac{10}{297} a^{3} - \frac{35}{99} a^{2} + \frac{14}{33} a - \frac{2}{11}$, $\frac{1}{52346651017732479617802123901913037} a^{17} - \frac{2522383016505178987439081314510}{17448883672577493205934041300637679} a^{16} + \frac{17545491894927585171424021209793}{17448883672577493205934041300637679} a^{15} + \frac{2433357601035518643392257871536633}{52346651017732479617802123901913037} a^{14} - \frac{83141648385570943507608591882271}{17448883672577493205934041300637679} a^{13} - \frac{465152962078056021525788141147827}{5816294557525831068644680433545893} a^{12} + \frac{2382639501824159818313562488059543}{17448883672577493205934041300637679} a^{11} - \frac{2146648685844314252751098602000993}{52346651017732479617802123901913037} a^{10} + \frac{24309652545626588096845758689153204}{52346651017732479617802123901913037} a^{9} + \frac{492007848979683200659936765399729}{4758786456157498147072920354719367} a^{8} - \frac{9224398986769761701455865634214957}{52346651017732479617802123901913037} a^{7} - \frac{4853061662350327520673821517706429}{17448883672577493205934041300637679} a^{6} + \frac{13564248315616207717384536470198446}{52346651017732479617802123901913037} a^{5} - \frac{215362372977305432930530279313098}{646254950836203452071631159282877} a^{4} + \frac{2240612121879364840368477862581800}{5816294557525831068644680433545893} a^{3} + \frac{74452013009164807080352431129988}{646254950836203452071631159282877} a^{2} - \frac{67665643604044636634373210360190}{215418316945401150690543719760959} a + \frac{95355227856435173816342193051940}{215418316945401150690543719760959}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29322275.4564 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2304 |
| The 40 conjugacy class representatives for t18n375 |
| Character table for t18n375 is not computed |
Intermediate fields
| 3.3.1129.1, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | $18$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $37$ | 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1129 | Data not computed | ||||||